Cinétique

I - Bilan de matière et vitesse d'une transformation chimique

- Quantité de matière :
 - ▶ Solide ou liquide : n = m/M;
 - ▶ Soluté : n = CV;
 - ▶ Gaz parfait : n = PV/RT (P en Pascal, V en m³, $R = 8.3 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$).

Concentration apportée = concentration initiale : instant fictif juste après préparation du système (incluant mélange donc dilution) et avant toute réaction.

- Équation de réaction : décrit les proportions dans lesquelles les espèces réagissent → nombres stoëchiométriques peuvent être fractionnaires et/ou algébriques (>0 si produits, <0 si réactifs).
- Avancement de réaction : 🏅 🕉 Attention ! L'avancement dépend des nombres stoëchiométriques.
 - ▶ avancement molaire ξ (en mol) : $n_i(t) = n_i(0) \pm v_i \xi(t)$;
 - ▶ avancement volumique x (en mol · L⁻¹) : $x = \xi/V$, pertinent uniquement si réaction dans une seule phase.
- Vitesse volumique de réaction : $[v] = \text{mol} \cdot L^{-1} \cdot s^{-1}$

$$v = \int_{\substack{d \text{eff}}}^{1} \frac{\mathrm{d}\xi}{V} \frac{\mathrm{d}\xi}{\mathrm{d}t} = \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{v_{A,\mathrm{alg}}} \frac{\mathrm{d}[A]}{\mathrm{d}t} = \pm \frac{1}{v_{A}} \frac{\mathrm{d}[A]}{\mathrm{d}t} \qquad \text{(+ si produit, - si réactif)}$$

- Facteurs cinétiques :
 - ▶ concentrations : en général *v* augmente lorsque les concentrations des réactifs augmentent;
 - ▶ température : *v* augmente lorsque *T* augmente (sauf rare exception);
 - ▶ catalyseur = espèce chimique qui n'apparaît pas dans l'équation mais accélère la transformation.

II - Modélisation par une loi de vitesse

Loi de vitesse = modèle qui relie la vitesse de réaction aux facteurs cinétiques.

• Ordres de réaction :

$$v = k \prod_{\text{réactifs } r} [A_r]^{q_r}$$
 avec
$$\begin{cases} k \text{ constante de vitesse, ne dépend que de } T \\ q_r \text{ ordre partiel par rapport au réactif } A_r \end{cases}$$

 $\stackrel{\bullet}{\bullet}$ $\stackrel{\bullet}{\bullet}$ Attention! Ordre partiel q_r ≠ nombre stoëchiométrique v_r .

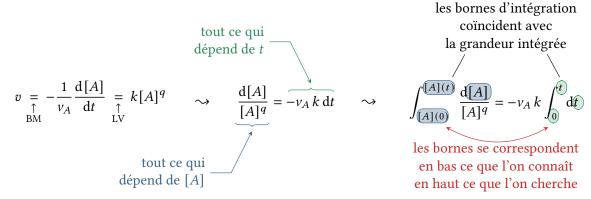
La dimension [k] dépend de l'ordre global $(q = \sum q_r)$ de la réaction.

• Loi d'Arrhénius :

$$k = K_0 \exp\left(-\frac{E_{\rm a}}{RT}\right) \qquad \text{avec} \qquad \begin{cases} E_{\rm a} \text{ \'energie d'activation, en J} \cdot \text{mol}^{-1} \\ K_0 \text{ facteur de fr\'equence} = \text{facteur pr\'e-exponentiel} \\ R \text{ constante des gaz parfaits} \\ T \text{ temp\'erature absolue, en K} \end{cases}$$

Fiche résumé C1 : Cinétique Lycée Corneille, MPSI 2

• Lois d'évolution des concentrations : procéder systématiquement par séparation de variables, car le but est souvent d'identifier une fonction linéaire de *t* (méthode intégrale).



III - Validation expérimentale d'une loi de vitesse

Exemple d'une loi de vitesse $v = k[A]^p[B]^q$

- Méthode d'isolement : choix de conditions expérimentales simplifiant la loi de vitesse.
- ▶ Dégénérescence de l'ordre : choisir $[B]_0 \gg [A]_0$, si bien que

$$\forall t$$
, $[B](t) \simeq [B]_0$ d'où $v \simeq k[A]^p[B]_0^q = k_{app}[A]^p$.

- \triangleright Conditions initiales stoëchiométriques : rend proportionnelles [A](t) et [B](t) à tout instant.
- Méthodes physiques de suivi cinétique :
- > Spectrophotométrie : mesure de l'absorbance, vérifiant la loi de Beer-Lambert

$$A = \sum_{\text{esp colorées } c} \varepsilon_c(\lambda) \, \ell \, [A_c] \qquad \text{avec} \qquad \begin{cases} \varepsilon_c(\lambda) \text{ coefficient d'extinction molaire} \\ \ell \text{ longueur de la cuve de spectrophotométrie} \end{cases}$$

▶ Conductimétrie : mesure de la conductivité, vérifiant la loi de Kohlrausch

$$\sigma = \sum_{\text{ions } i} \lambda_i [A_i] \quad \text{avec} \quad \begin{cases} \lambda_i \text{ conductivit\'e molaire ionique} \\ \bullet \bullet \bullet \bullet \text{ Attention ! } [A_i] \text{ en mol} \cdot \text{m}^{-3} \end{cases}$$

- ▶ *Manométrie* : mesure de pression.
- Validation d'une hypothèse par la méthode intégrale à partir de mesures de [A] ou d'une grandeur g directement liée à [A].
 - ▶ intégrer la loi de vitesse supposée et identifier une fonction f([A]) ou f(g) s'écrivant comme une fonction linéaire du temps si l'hypothèse d'ordre est valable;
 - ▶ tracer f([A]) ou f(g) en fonction du temps;
 - ▶ si ce n'est pas une droite, l'hypothèse sur l'ordre est rejetée;
 - \triangleright si c'est bel et bien une droite, procéder à une régression linéaire pour estimer la constante de vitesse k et éventuellement son incertitude-type u(k).
- Validation d'une hypothèse par les temps de demi-réaction : $[A](t_{1/2}) = [A]_0/2$.
- Récapitulatif des résultats obtenus (pas à connaître, mais à retrouver à chaque fois)

Hypothèse d'ordre	0	1	2
Loi de vitesse intégrée, sous forme de fonction linéaire de <i>t</i>	$[A] - [A]_0 = -\nu_A kt$	$ \ln\frac{[A]}{[A]_0} = -\nu_A kt $	$\frac{1}{[A]} - \frac{1}{[A]_0} = \nu_A kt$
Graphe à tracer (méthode intégrale)	$[A] - [A]_0$ en fct t	$ \ln \frac{[A]}{[A]_0} \text{ en fct } t $	$\frac{1}{[A]} - \frac{1}{[A]_0} \text{ en fct } t$
Temps de demi-réaction	$t_{1/2} = \frac{[A]_0}{2k\nu_A} \propto [A]_0$	$t_{1/2} = \frac{\ln 2}{k\nu_A} \text{ indpt } [A]_0$	$t_{1/2} = \frac{1}{k \nu_A[A]_0} \propto 1/[A]_0$

Fiche résumé C1 : Cinétique Lycée Corneille, MPSI 2

• Estimation d'un ordre par la méthode différentielle : linéarisation de la loi de vitesse : $\ln v = p \ln[A] + \ln k_{\rm app}$

- \triangleright calcul de v par dérivation numérique de [A] (\rightsquigarrow sensible au bruit donc peu précis);
- ▶ tracer ln v en fonction de ln[A];
- ▶ procéder à une régression affine : pente,ord_orig = np.polyfit(x,y,1)

Dérivation numérique : taux d'accroissement entre les instants n-1 et n+1

$$\frac{\mathrm{d}[A]}{\mathrm{d}t}(t_n) \simeq \frac{[A](t_{n+1}) - [A](t_{n-1})}{t_{n+1} - t_{n-1}}$$

Attention! aux indices extrêmes lors de la construction de listes : la liste de la dérivée compte deux éléments de moins que celle des concentrations.

