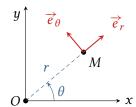
Mouvements circulaires

I - D'autres repérages des trajectoires planes

• Vecteur déplacement élémentaire : $\overrightarrow{dM} = \overrightarrow{dOM} = \overrightarrow{OM}(t + dt) - \overrightarrow{OM}(t)$ avec dt infinitésimal.

$$\overrightarrow{v} = \frac{d\overrightarrow{OM}}{dt} \iff d\overrightarrow{OM} = \overrightarrow{v} dt$$
.

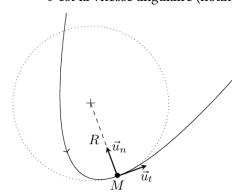
En coordonnées cartésiennes : $\overrightarrow{dOM} = dx \overrightarrow{e}_x + dy \overrightarrow{e}_y + dz \overrightarrow{e}_z$.



ullet Base polaire : base locale, qui dépend du point M, et donc du temps si M est en mouvement

$$\frac{\mathrm{d}\,\overrightarrow{e}_r}{\mathrm{d}t} = \dot{\theta}\,\overrightarrow{e}_\theta \qquad \text{et} \qquad \frac{\mathrm{d}\,\overrightarrow{e}_\theta}{\mathrm{d}t} = -\dot{\theta}\,\overrightarrow{e}_r\,.$$

- Cinématique dans la base polaire :
 - ▶ déplacement élémentaire : $d\overrightarrow{OM} = dr \overrightarrow{e_r} + r d\theta \overrightarrow{e_\theta}$
 - ▶ vecteur position : $\overrightarrow{OM} = r \overrightarrow{e_r}$ (et rien du tout selon $\overrightarrow{e_\theta}$!)
 - ▶ vecteurs vitesse et accélération : à retrouver au cas par cas en dérivant le vecteur position
 - \triangleright $\dot{\theta}$ est la vitesse angulaire (notation ω ou Ω).



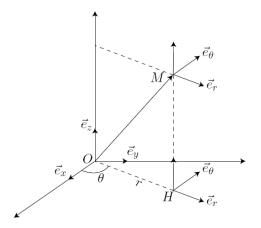
- Base de Frénet : base locale.
- $ightharpoonup \vec{u}_t$ tangent à la trajectoire, dirigé dans le sens du mouvement;
- $ightharpoonup \vec{u}_n$ normal à la trajectoire, dirigé vers l'intérieur de la courbure.
- Cinématique dans la base de Frénet :

$$\overrightarrow{v} = v \overrightarrow{u}_t$$
 et $\overrightarrow{a} = \frac{\mathrm{d}v}{\mathrm{d}t} \overrightarrow{u}_t + \frac{v^2}{R} \overrightarrow{u}_n$.

avec $v = ||\overrightarrow{v}||$ et R rayon de courbure de la trajectoire.

→ l'accélération est toujours dirigée vers l'intérieur de la trajectoire, potentiellement non-nulle même si le mouvement est uniforme.

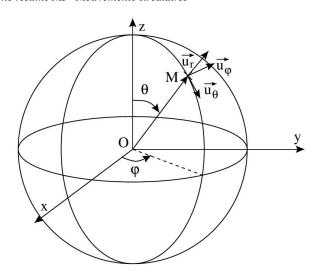
II - Généralisation tridimensionnelle



• Coordonnées cylindriques : $r = OH \neq OM$, avec H projeté orthogonal de M dans le plan (Oxy).

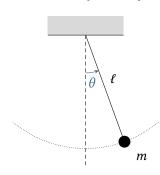
$$\frac{\mathrm{d}\,\overrightarrow{e_r}}{\mathrm{d}t} = \dot{\theta}\,\overrightarrow{e_\theta} \qquad \frac{\mathrm{d}\,\overrightarrow{e_\theta}}{\mathrm{d}t} = -\dot{\theta}\,\overrightarrow{e_r} \qquad \frac{\mathrm{d}\,\overrightarrow{e_z}}{\mathrm{d}t} = \overrightarrow{0}$$

- Cinématique en coordonnées cylindriques :
 - ightharpoonup déplacement élémentaire : $d\overrightarrow{OM} = dr \overrightarrow{e}_r + r d\theta \overrightarrow{e}_\theta + dz \overrightarrow{e}_z$;
 - ▶ vecteur position : $\overrightarrow{OM} = r \overrightarrow{e}_r + z \overrightarrow{e}_z$ (et rien du tout selon $\overrightarrow{e}_\theta$!);
 - ▶ vecteurs vitesse et accélération : à retrouver au cas par cas en dérivant le vecteur position;
 - \triangleright $\dot{\theta}$ est la vitesse angulaire (notation ω ou Ω).



- Coordonnées sphériques :
 - ▶ Rayon $r = OM \ge 0$;
 - ▶ Colatitude θ : restreint au domaine $[0, \pi]$... et non pas $[0, 2\pi]$;
 - ▶ Azimuth $\varphi \in [0, 2\pi[$
- Vecteur position : $\overrightarrow{OM} = r \overrightarrow{e}_r$.

III - Exemple du pendule simple



• Équation du mouvement :

$$\ddot{\theta} + \omega_0^2 \sin \theta = 0$$
 avec $\omega_0 = \sqrt{\frac{g}{\ell}}$.

- Limite des petites oscillations : $\sin\theta \simeq \theta$
 - → comportement d'oscillateur harmonique.

Isochronisme des petites oscillations = période indépendante de l'amplitude.