Phénoménologie des ondes

Plan du cours

I Phénomène de propagation

- I.1 Mise en évidence expérimentale et définitions
- I.2 Modèle de l'onde progressive à une dimension
- I.3 Expression mathématique d'une onde progressive à une dimension
- I.4 Onde progressive harmonique

II Diffraction

- II.1 Observations expérimentales
- II.2 Origine qualitative du phénomène
- II.3 Caractéristiques des figures de diffraction

III Interférences à deux ondes

- III.1 Principe de superposition
- III.2 Observation expérimentale
- III.3 Modélisation : superposition de deux OPH synchrones de même amplitude

IV Ondes stationnaires

- IV.1 Expérience de la corde de Melde
- IV.2 Modélisation : superposition de deux OPH synchrones et de même amplitude se propageant en sens opposé
- IV.3 Structure de l'onde stationnaire harmonique
- IV.4 Modes propres
- IV.5 Mouvement général d'une corde fixée à ses deux extrémités

Ce que vous devez savoir et savoir faire

- ▷ Citer quelques ordres de grandeur de célérité d'ondes mécaniques, acoustiques et électromagnétiques.
- ▶ Dans le cas d'une onde progressive, représenter graphiquement la forme à différents instants et l'évolution temporelle à position fixée.
- > Écrire les formes mathématiques décrivant une onde progressive et une onde progressive harmonique.
- ▷ Déterminer le retard temporel dû à la propagation, ainsi que le déphasage dans le cas d'une onde harmonique.
- ▶ Établir la relation de dispersion entre la fréquence, la longueur d'onde et la célérité d'une onde progressive harmonique.
- ▷ Savoir quelles conditions expérimentales conduisent au phénomène de diffraction en optique ou en mécanique.
- \triangleright Utiliser la relation $\sin \theta \simeq \lambda/a$ entre l'échelle angulaire θ du phénomène de diffraction et la taille caractéristique a de l'ouverture.
- ⊳ Connaître et exploiter le principe de superposition.
- > Connaître et exploiter les conditions d'interférences constructives ou destructives.
- ▷ Connaître les formules d'addition des cosinus.
- $\,\rhd\,$ Décrire une corde de Melde observée par stroboscopie.
- ▶ Écrire la forme mathématique décrivant une onde stationnaire.
- ▷ Caractériser une onde stationnaire en termes de nœuds et de ventres.
- Exprimer les fréquences des modes propres connaissant la célérité et la longueur de la corde.
- ▷ Savoir qu'une vibration quelconque d'une corde accrochée entre deux extrémités fixes se décompose en modes propres.

Questions de cours pour les colles _

Cette liste de questions de cours est indicative et n'est en aucun cas une invitation à ne pas travailler le reste du cours puisqu'il sera nécessaire pour résoudre les exercices.

Des combinaisons entre questions de connaissances et exercices de cours sont bien sûr possibles.

- \triangleright Donner sans démonstration les deux formes mathématiques par lesquelles on peut modéliser une onde progressive (quelconque ou harmonique, au choix de l'interrogateur) se propageant à la célérité c dans le sens des x croissants. Que deviennent ces deux formes dans le cas où l'onde se propage dans le sens des x décroissants?
- ▶ Rappeler sans démonstration les conditions d'interférences parfaitement constructives et parfaitement destructives, d'abord en termes de déphasage puis en termes de différence de marche et de longueur d'onde.
- Donner sans démonstration la forme mathématique permettant de modéliser une onde stationnaire.
- ▶ Rappeler sans démonstration la forme mathématique d'une OPH. Montrer que la superposition de deux OPH synchrones de même amplitude se propageant en sens opposé donne une onde stationnaire.
- ⊳ En s'aidant d'un schéma pour le justifier qualitativement, mais sans démonstration mathématique, exprimer la longueur d'onde et la fréquences des modes propres d'une corde fixée à ses extrémités en fonction de la célérité des ondes sur la corde et de la longueur de la corde.
- ▶ Exercices de cours C1 (triangle dissymétrique ou double bosse comme dans l'animation montrée en cours), C2 (ne pas hésiter à s'aider d'un schéma), C5 et C6.

Tableau comparatif _____

	Onde progressive harmonique	Onde stationnaire harmonique
Chrono- photographie	$-t = 0 \qquadt = T/3$ $-t = T/6 \qquadt = T/2$	$-t = 0 \qquadt = T/3$ $-t = T/6 \qquadt = T/2$
Propagation	Progression de l'onde à la célérité c .	Pas de progression de l'onde.
Déformation	Toutes les parties de la corde sont soumises, au cours du temps, aux mêmes déformations.	Certaines parties de la corde ne se déforment pas (nœuds) alors que d'autres subissent des déformations maximales (ventres).
Double périodicité	La longueur d'onde λ et la période T sont reliées par la relation de dispersion $\lambda=cT$.	La longueur d'onde λ et la période T sont reliées par la relation de dispersion $\lambda=cT$.
Phase du signal	La phase dépend du point considéré. Deux points distants de λ vibrent en phase.	La phase est la même pour tous les points situés entre deux nœuds de vibration. Deux points dans deux fuseaux consécutifs vibrent en opposition de phase.
Réflexion	Pas de réflexion à l'extrémité de la corde opposée à la source.	Réflexion totale à l'extrémité de la corde opposée à la source.