Electronique — Cours 5 Lycée Corneille, MPSI 2
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Les paragraphes sans mention en marge sont la pour faciliter votre compréhension
ou pour votre culture mais n’ont pas forcément besoin d’étre appris en tant que tel.

Ce dernier cours d’électronique constitue une introduction au domaine trés vaste du traitement du signal,
que l'on peut définir I'ensemble des méthodes (physiques, mathématiques et numériques) permettant d’analyser,
transformer et interpréter des signaux (audio, images, données). Il vise a extraire de I'information utile, réduire le
bruit parasite, améliorer la qualité ou encore faciliter la transmission.
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| - Compléments mathématiques sur les signaux périodiques
Un signal physique ayant une durée finie, il peut toujours étre vu comme une période d’un signal périodique,
en le répliquant a I'identique au dela de 'intervalle temporel sur lequel il est réellement défini. Les considérations
développées dans ce paragraphe sont donc de portée tres générale.

I.LA - Développement de Fourier d’un signal périodique

e Définition

Tout signal y périodique de pulsation w et de forme quelconque
® peut se décomposer en une somme de signaux sinusoidaux de pulsations multiples de w.

+o00

y(t) =Yy + Z Y, cos(nwt + ¢,) avecY, > 0et g, €] — m, ]
n=1
+00 +00

y(t) =Yy + Z A, cos(nwt) + Z B,, sin(nwt) avec A, et B, quelconques
n=1 n=1

m
@ Cette écriture est appelée développement en série de Fourier ou décomposition de Fourier de y(¢).
> Les termes du développement de Fourier sont appelés harmoniques du signal, repérées par leur rang n :
Ya, 0, = no et ¢, sont 'amplitude, la pulsation et la phase initiale de ’harmonique de rang n.

> Le terme constant Yy, correspondant a ’harmonique de rang 0 et de pulsation nulle, est appelé compo-
sante continue du signal.

> L’harmonique de rang 1, de méme pulsation que le signal lui-méme, est appelée fondamental.

> Le spectre (d’amplitude) du signal y(t) est la représentation des amplitudes Y, des différentes harmo-
niques en fonction de leur pulsation w, = nw ou le plus souvent de leur fréquence f; = w,/27.

Remarque : le terme constant Y, peut étre inclus dans la somme comme un cosinus de pulsation nulle,
correspondant au terme n = 0.

®» Pour approfondir : Les sommes infinies doivent s’interpréter comme d’habitude, c’est-a-dire comme des limites
de sommes finies dont la borne du haut tend vers l'infini, avec comme d’habitude une difficulté mathématique quant a
I'existence de la limite. On peut montrer que la convergence est assurée pour toute fonction f périodique de période T telle
que la fonction | f|* soit intégrable sur [0, T]. Les fonctions « usuelles » représentant des signaux physiques admettent
toutes un développement en série de Fourier, mais ce n’est pas le cas, par exemple, de la fonction inverse.

En notant T = 27/w la période du signal, les coefficients de Fourier sont donnés par

1 T
Yo = = t) dt
0 T/oy()

et pour tout n > 0,

2 (T 2 [T
A, = —/ y(t) cos(nwt)dt et B, = —/ y(1) sin(nwt)dt .
T 0 T 0

On peut ensuite remonter a U, et ¢, par de la trigonométrie classique :

B
Y, = VA? + B} et tan ¢, = —— .

An

Le retour a ¢, par la fonction arctan demande d’analyser les signes de A,, et B,. [ ]

o lllustration

Le développement en série de Fourier d’un signal créneau de valeurs 0 et E s’écrit

E  2E 1. E 2E<
y(t):5+? Z ;sm(na)t)—5+;z

n impairs p=0

1 sin ((Zp + 1)wt) .
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Syntheése du signal avec Python : on travaille avec des tableaux numpy, mais des listes pourraient tout aussi bien
convenir. Le signal obtenu pour différents nombres d’harmoniques est représenté figure 1.

1 |import numpy as np
: |import matplotlib.pyplot as plt

3 [plt.close(’all’)

5 |# Paramétres du signal

=1 # unité arbitraire

= 2 % np.pi / T # pulsation

= np.linspace(-T, T, 1000) # temps

o =5 4

o |[E =1 # amplitude du signal

12 [N = 3 # nombre de termes de la série de Fourier
13|y = E/2 * np.ones_like(t) # dinitialisation du signal reconstitué

5 | for p in range (N):
16 y += (2 * E / (np.pi * (2*xp + 1))) * np.sin((2*xp + 1) * w * t)

18 [plt.figure ()

19 |plt.plot(t,y)

20 |plt.xlabel(’t (période unité)’)
2 |plt.ylabel (Py(t)’)
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_0.2 T T T T T T T 1
-1.00 -0.75 —-0.50  —0.25 0.00 0.25 0.50 0.75 1.00

t (période unité)

Figure 1 — Synthése de Fourier d’un signal créneau.

e Contenu physique des différentes harmoniques

Observation :
> Synthése spectrale ne prenant en compte que les premieres harmoniques :

rend I’allure globale du signal, les perturbations se limitent aux discontinuités

Espace 1
> Synthese spectrale excluant les premiéres harmoniques :

I'allure globale du signal est perdue, seules demeurent visibles les discontinuités
Espace 2
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Figure 2 — Synthése de Fourier d'un signal créneau. Gauche : seules les 30 premiéres harmoniques sont prises en
compte. Droite : les 30 premiéres harmoniques sont éliminées de la synthése spectrale.

Généralisation :

Les premiéres harmoniques d’un signal codent son allure générale.
@ 4 Les harmoniques d’ordre élevé codent ses variations rapides : discontinuités, bruit.

I.B - Valeur moyenne

e Définition

® On appelle valeur moyenne d’un signal y de période T

1 to+T
W=7/ vwa.
'
Elle ne dépend pas de 'instant initial ¢, utilisé pour le calcul.

Le moyennage est une opération linéaire : pour deux signaux y; (t) et y»(¢) et deux constantes 1, et Ay,

Myt + Aay2) = A1 (Y1) + A2 (v2)

~> 1y peut donc étre choisi de facon a simplifier le calcul de l'intégrale.

Démonstration qualitative : Considérons le signal y(t) représenté figure 3, dont on cherche a estimer la valeur
moyenne. Pour I'approcher, on peut commencer par échantillonner N valeurs équiréparties au sein d’une période,
séparées d’une durée At, et calculer leur moyenne,

1 N-1 1 N-1
W) = 5 2 ¥t = 7 )y,

puisque At = T/N, soit N = T/At. Graphiquement, y(t,)At s’interpréte comme l'aire d’un rectangle de largeur At
et de hauteur y(t,), comme schématisé figure 3. La moyenne s’obtient dans la limite N — co, ou la somme des
aires des rectangles tend vers l'aire sous la courbe représentant le signal, et ou la somme tend vers I'intégrale.

y

Figure 3 — Moyenne d’un signal périodique.
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¢ Signal sinusoidal

Un signal sinusoidal est de moyenne nulle.

=)
@ (cos(wt + ¢)) = (sin(wt +¢)) =0

Démonstration :

Yy
V\ Qualitativement :1a courbe d’une fonction sinus ou cosinus est symétrique, et passe

autant de temps au dessus qu’au dessous de I’axe des abscisses.

— L Par le calcul : un sinus n’est qu’un cosinus déphasé de —/2, il suffit donc de mon-
T \/ trer le résultat pour le cosinus.
2

Posons y(t) = Yy, cos(wt + ¢). Alors

T
(y(t)) YTm /0 cos(wt + @) dt

T

Yo [1
—[—sm(a)t+(p)
T |w 0

Y, 2
== ( sin(271 + @) — sin(27r)) car o = =%
2 T
(y(1)) =0
Espace 3
¢ Signal quelconque
m . e . . .
@ La moyenne d’un signal périodique quelconque est égale a sa composante continue.
Démonstration : Par linéarité de la moyenne,
+00
(Y1) = (Yo + ) (Yy cos(nwt + pn))
n=1
+00 T
Y, 1 .
=Y, + Z ?n [% sin(nwt + ¢,) )
n=1
- Y, 2
=Y, + nzz; ﬁ(sin(Znﬁ + ¢n) — sin(q)n)) car w = T
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Espace 4

I.C - Valeur efficace

o Définition

® On appelle valeur efficace d’un signal y de période T

[oc] to+T
0 Yeﬁ=J<y_2>=\/%/ y(H)?dt

é & & Attention ! La valeur efficace n’est évidemment pas linéaire !

Intérét :
@ > la valeur moyenne d’un signal sinusoidal étant toujours nulle, elle ne nous dit pas s’il est « grand » ou pas, au
contraire de la valeur efficace;
> les grandeurs énergétiques sont systématiquement reliées au carré des signaux, la valeur efficace d’un signal est
une grandeur qui y est adaptée.

Remarque : L’usage en électronique de puissance est de quantifier les signaux non pas par leur ampli-
tude, mais directement par leur valeur efficace. Ainsi, la tension secteur fournie par EDF a une valeur
efficace de 230V et une fréquence de 50 Hz.

¢ Signal sinusoidal

® La valeur efficace Y d’un signal sinusoidal y(t) est reliée a son amplitude Y;, par
m
Y,
@ Yef = —=

V2

YZ
@ Démonstration : Posons y(t) = Y, cos(wt + @), donc y(1)? = ?m (1 + cos(2wt + Z(p)). Ainsi,

2 2 Yi o1 Y2
Y= (y(t) > = - + 5 (cos(2wt + 2¢)) = - +0

Espace 5

(cc BY-NC-SA 6/23 © Etienne Thibierge, www.etienne-thibierge.fr


http://creativecommons.org/licenses/by-nc-sa/4.0/
www.etienne-thibierge.fr

Cours E5 : Filtrage

¢ Signal quelconque

Théoréme de Parseval-Plancherel :

Le carré de la valeur efficace d’un signal périodique quelconque
est égal a la somme des carrés des valeurs efficaces de ses harmoniques :

+00

si y(t) = Z Y, cos(nwt + ¢,) alors (y(t)2> = Z (yn(t)2> = % Z Y2
n=0 n=0 n=0

Démonstration : en utilisant le développement en série de Fourier,

y(£) =D 4p (1) x D yg(t) = . (yp<t>2 £ yp<r)yq<t))
p=0 q=0

p=0 q=0
q#p

donc par passage a la moyenne

(y(1)?) = i ((yp(t)2> + i (yp(t)yq(t)>)

p=0 q=0
q#p

En linéarisant le produit de cosinus intervenant dans la deuxiéme somme,

%Y

Yp(t)ye(t) = Y, Y, cos(pot + ¢,) cos(qut + @q) = (cos((p + Q)ot + @p + @g) + cos((p — qQ)wt + ¢ — (pq))

Or nous avons montré précédemment que Vn # 0, (cos(nwt + ¢) = 0 : tous les termes de la deuxiéme somme sont
donc nuls, puisqu’elle est restreinte aux indices p et g différents. On a donc bien

(y(®)?) = > (ga()?) .
n=0

Il - Caractérisation d’un filtre linéaire

I1.A - Notion de filtre linéaire

On appelle filtre un systéme permettant de transmettre dans un signal de sortie s
de I'information issue d’un signal d’entrée e sélectionnée par un critére fréquentiel.

N —

entrée e(t)

Filtre

sortie s(t)

Exemples :

> Un récepteur radio regoit toutes les ondes a la fois, mais doit étre capable de sélectionner uniquement
une bande de fréquence précise correspondant a la station écoutée.

> Une chaine Hi-Fi doit envoyer les fréquences graves, intermédiaires ou aigués vers les hauts-parleurs
dédiés, et donc étre capable de les séparer.

> Les signaux issus d’un capteur peuvent étre perturbés par un bruit aléatoire qu’il faut éliminer.

Un filtre est un quadripdle, c’est-a-dire qu’il posséde quatre bornes : deux

€ y . > , . .
[ filtre sont dédiées au signal d’entrée, deux autres au signal de sortie.

Un filtre est dit linéaire s’il vérifie le principe de superposition :

si a deux entrées e;(t) et ez (¢) il associe respectivement les sorties s; () et sz (1)
alors la sortie associée a 'entrée e(t) = Aje(t) + Azex(t) est s(t) = Ays1(f) + Azs2(2).

[@) ov-nc-sa | 7/23
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®

Critere d’identification : un filtre pour lequel e(¢) et s(¢) sont reliés par une équation différentielle linéaire a
coefficients constants est un filtre linéaire.

~>» C’est le cas pour tous les filtres que nous rencontrerons cette année.

De plus, nous nous limiterons aux filtres passifs analogiques :
> filtre passif : aucun générateur ni composant alimenté a 'intérieur du filtre, par opposition a un filtre actif’;
> filtre analogique : agit directement sur les tensions électriques, sans numérisation.

Remarque : Le filtrage moderne est de plus en plus souvent numérique : apreés acquisition, le signal est
traité numériquement par un code informatique.

I1.B - Fonction de transfert harmonique

Nous expliquerons par la suite que le signal de sortie d’un filtre linéaire peut se calculer pour une entrée
quelconque a condition de connaitre le comportement du filtre pour n’importe quelle entrée sinusoidale.

~» on se place donc dans le cas d’une entrée sinusoidale, ce qui permet de réinvestir toute la puissance des
représentations complexes.

On appelle fonction de transfert harmonique d’un filtre linéaire
@ le rapport des amplitudes complexes des signaux d’entrée et de sortie en fonction de la pulsation.
¢

H(w) =

It 1t

e Interprétation

Notons les signaux
e(t) = Ey cos(wt + @e) et s(t) = Sy cos(wt + @s)

Amplitudes complexes : E = Ey, e/% et S = S, el*s

Espace 6
> Module |H| :
{ } = @ _ Sm ~> rapport des amplitudes
SR B PP .
Espace 7
> Argumentarg H :
argH = argS — arg E = ¢s — ¢ ~> déphasage de la sortie par rapport a 'entrée.
Espace 8
Le module de la fonction de transfert est le rapport entre les amplitudes des signaux de sortie et d’entrée;
m son argument est le déphasage du signal de sortie par rapport au signal d’entrée.
g 5o
Hf == et argH=¢s—gc=Apye
m
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e Lien a I’équation différentielle

Application 1 : Circuit RC

Considérons le filtre réalisé par le circuit RC série, en interprétant la tension
aux bornes du condensateur comme étant le signal de sortie du filtre et la tension

R L . S
— du générateur comme étant I'entrée.
e T C) C__I s 1 - Etablir ’équation différentielle du circuit reliant e et s.
2 - En travaillant en représentation complexe, établir la fonction de transfert H.

3 - Retrouver I’équation différentielle a partir de la fonction de transfert.

\

Généralisation : comme I’équation différentielle et la fonction de transfert décrivent le méme systéme physique,
elles ne sont pas indépendantes I'une de Iautre.

L’équation différentielle du circuit et sa fonction de transfert ®
se déduisent 'une de I'autre par la correspondance
¢ d

X —
L dr

Remarque : L’équation différentielle ne fait intervenir que des dérivées, jamais des primitives. Il est
donc nécessaire d’écrire la fonction de transfert comme un polynéme en jo avant d’identifier, sans qu’il
ne reste de division.

Remarque : il existe aussi une correspondance avec la fonction de transfert dans le domaine de Laplace,

d
Xjo —— — > Xp

dt

L’ordre de la dérivée la plus élevée dans I’équation différentielle,
ou de facon équivalente la puissance de jw la plus élevée dans la fonction de transfert, ®
est appelé ordre du filtre (ou plus largement du systéme).

11.C - Diagramme de Bode

"_”% Un peu d’histoire : Hendrik Wade Bode (1905-1982) est un ingénieur et mathématicien américain
ayant travaillé aux Bell Laboratories. Il a joué un réle central dans le développement de la théorie
fréquentielle des systémes linéaires. Aprés avoir décroché un doctorat a 24 ans, ce qui est particulié-
rement précoce pour I’époque, c’est vers la fin des années 1930 qu’il a proposé les diagrammes qui
portent son nom, outils graphiques essentiels pour I’analyse de la stabilité et de la robustesse des
systémes a rétroaction, dont lutilisation s’est diffusée a partir des années 1940. Bode a aussi formulé
le théoréme intégral de Bode, établissant des limites fondamentales du filtrage et de 'amplification.
Ses travaux ont structuré I’automatique moderne et les télécommunications.

Le diagramme de Bode d’un filtre est une (double) représentation graphique
de sa fonction de transfert en fonction de la pulsation : ®

diagramme en gain : Ggp en fonction de w diagramme en phase : arg H en fonction de w.

L’axe des pulsations est gradué en échelle logarithmique.
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e Gain en décibel

® On appelle gain en décibel la grandeur définie par
¢ Ggp(w) = 20log|H(w)] — |H(w)| = 10CdB (@) /20

Remarque : Le gain en décibel est parfois appelé simplement « gain » ... mais le « gain » sans autre
précision peut aussi désigner |H|, selon le contexte.

Signe du gain :

Ggp < 0 & |H| < 1donc le signal de sortie est atténué par rapport au signal d’entrée, de méme Ggg > 0 signifie
que le signal de sortie est amplifié par rapport au signal d’entrée.

Espace 9
Ordres de grandeur :
@ Gap |H|
-1dB 0,9
-3dB | 0,7 ~1/V2 ~> des faibles variations de gain en décibel peuvent se traduire par de trés fortes mo-
-10dB ~0,3 difications d’amplitude du signal!
-20dB 1/10
-40dB 1/100

e Echelle logarithmique

Les axes ne sont pas gradués de 1 en 1, mais de puissance de dix en puissance de dix. Lorsque deux nombres
différent d’un facteur 10, c’est-a-dire qu’ils sont distants d’une unité en échelle logarithmique, ils sont dits séparés
d’une décade.

une décade une décade
~ P
i i i i % — X % % i i i +— log X
10 10" 10* 10° 10* 10° 0 1 2 3 4 5
~> intérét : une échelle logarithmique permet de représenter simultanément des valeurs trés faibles et trés
@ élevées, qui different de plusieurs ordres de grandeur.

11.D - Bande passante

® On appelle bande passante d’un filtre la gamme de fréquences pour laquelle les signaux sont transmis.

Elle est définie conventionnellement par le critére

H..
@ w€e€BP < |H(w)|> \/r%f — Ggp(w) > Gur—3dB.

Le gain de référence Gy¢r = 20 log(H,¢r) dépend du filtre envisagé.

La/les limite(s) de la bande passante définissent la/les pulsation(s) de coupure du filtre.

Remarque : Compte tenu de la définition des pulsations de coupure, on parle parfois de « bande passante
da —3dB ».
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11l - Exemples fondamentaux
l1ILA - Méthodes d’étude d’un filtre

e Déterminer la nature du filtre par équivalence de dipéles

Rappel : dipéles équivalents.
> Basse fréquence : condensateur <= interrupteur ouvert; bobine <= fil;
> Haute fréquence : condensateur < fil ; bobine < interrupteur ouvert.

Méthode :
O Dessiner (au moins dans sa téte) deux schémas équivalents du filtre, en haute et basse fréquence;
® Déterminer S en fonction de E sur ces schémas;
©® Si S =E alors le signal est transmis pour la gamme de fréquence correspondante, si S = 0 alors il est coupé.

e Etablir la fonction de transfert sous forme canonique

Méthode :
© Exprimer H en fonction des composants avec un pont diviseur;
® Multiplier le numérateur et le dénominateur par la quantité permettant de faire apparaitre les 1 « aux bons
endroits » ;
©® Identifier les parameétres de la forme canonique.

e Tracer un diagramme de Bode

Le tracé commence toujours par celui d’'un diagramme asymptotique (= affine par morceaux) auquel on super-
pose l’allure du diagramme réel. Pour les diagrammes théoriques, il est fréquent d’utiliser une pulsation réduite
en abscisse.

© Etudier séparément les limites basse et haute fréquence;;

® Pour chaque limite, commencer par calculer la fonction de transfert équivalente en ne conservant que les
termes dominants du numérateur et du dénominateur;

©® Dans un second temps, calculer le module et ’argument pour obtenir les équations des asymptotes;

® Pour un deuxieme ordre, I’allure du diagramme réel est précisée en calculant explicitement la valeur exacte
en w = w (existence éventuelle d’'une résonance).

é & & Attention ! Exprimer le module et 'argument en toute généralité pour prendre des équivalents dans un
second temps alourdit énormément les calculs : a ne pas faire ...

111.B - Filtre passe-bas du premier ordre

Application 2 : Filtre RC passe-bas
M

Le circuit RC étudié dans I’application 1 est un filtre passe-bas du premier ordre.

1 - En raisonnant par équivalence de dipdle, montrer que les signaux basse fréquence sont transmis par le filtre,
au contraire des signaux haute fréquence.

2 - Identifier les paramétres Hy et . permettant d’écrire la fonction de transfert sous forme canonique

3 - Construire le diagramme de Bode en gain du filtre en fonction de x = w/w.

4 - Déterminer la bande passante du filtre et justifier la dénomination de « passe-bas ».
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20 1T T 11111 1T 111111 T 1111110 1T T 11111 T T 1T T T 11T

Gag (dB)

—40 il

—60 [~ o

Lol Lol Lol Lol Ll A

1073 1072 107! 10° 10! 10° 10°
X

Généralisation :

La fonction de transfert d’un filtre passe-bas du premier ordre a pour forme canonique

H, . {a)c est la pulsation de coupure.
H= ou

1+ jﬁ Hj est le gain statique.

C

Diagramme de Bode pour Hy =1 :

T 1T T T 1T T T 1T T T 17777 T TTTTIT T TTTTIT T TTTTIT T TTTTTT
0 -
mi —~~ 0 i ~
g 2 E f
g ~10F | N
Q <
—20 | i —71'/2 """""""
Ll Ll Ll INL L] Ll Ll Ll I \HH;
1072 107t 10° 10! 10° 1072 107t 10° 10! 10°
X =w/we X =w/we

L’asymptote oblique en haute fréquence du diagramme en gain a une pente de —20 dB par décade.

Sa bande passante est 'intervalle [0, w].

I11.C - Filtre passe-haut du premier ordre

Application 3 : Filtre RC passe-haut

1 - Montrer qualitativement que le montage ci-contre permet de réaliser un filtre
passe-haut.

2 - Etablir sa fonction de transfert et I’écrire sous forme canonique,

0)
Yo
H(w) = .

1+j—
We

3 - Construire le diagramme de Bode en gain du filtre en fonction de la pulsation réduite.

4 - Déterminer la bande passante du filtre et justifier sa dénomination.

L J
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20 T \\\HH‘ T \\\HH‘ T \\\HH‘ T \\\HH‘ T \\\HH‘ T T T 111717
O - ]
8 -2/ i
3
&)
_40 - o
_60 - |
Lo il Lol Lol Lo il Ll Lol
1073 1072 107! 10° 10! 102 10°
x
Généralisation :
La fonction de transfert d’un filtre passe-haut du premier ordre a pour forme canonique @
j— Hop
c HO N .
H= = 7 ol w, est la pulsation de coupure.
- . C
1+j— 1-j—

Diagramme de Bode pour Hy =1:

2 |- |
—~ o7 /2
) . el f
g s
Q <
20 i
0 |-
L 1A Ll Ll Ll Ll Ll Ll Ll
107 107t 10° 10! 10 1072 107t 10° 10! 10
X = w/w, X =0/

L’asymptote oblique en basse fréquence du diagramme en gain a une pente de 20 dB par décade.

Sa bande passante est I'intervalle [w,, +oo].

I11.D - Filtre passe-bande

Application 4 : Filtre RLC passe-bande

1 - Montrer qualitativement que le montage ci-contre permet de réaliser un filtre

passe-bande.
Hy
: 1)
1+j0O (x = —)
x

2 - Etablir sa fonction de transfert et 'écrire sous forme canonique H(x) =

3 - Construire le diagramme de Bode en gain pour Q = 0,1 et Q = 10.

4 - Déterminer la bande passante du filtre. Comment choisir le facteur de qualité ?

”G 13/2 3 © Etienne Thibierge, www.etienne-thibierge.fr
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T T T TTTTT T T T TTTTTT T T T TTTTIT T T T TTTTT T 1T T 11117 T T T T 1117
20 - 0
0 - i
= 20| :
=
g
QO —40 0
—60 i
—80 |- o
| Lo | | | Lo
1073 1072 107! 10° 10! 10° 10°
x
Généralisation :
® La fonction de transfert d’un filtre passe-bande du deuxiéme ordre a pour forme canonique
jx
H JEH"
12)
H(x) = 0 = - oux =—
- . 1 2 X Wo
1+jQfx——=| 1-x"+7—=
x Q
wo est appelée pulsation centrale, propre ou de résonance.
Diagramme de Bode pour Hy =1 :
20 B T T TTTTIT T T 17 W T T TTTTIT T TTTTT[ 27 T T 11T T T 11T T T 11T T T 111117
/2
—~~ 0 B 1 —~~ 1
s
) :
g —20 s
) <
40 F I -1
-r/2
_60 Lol L1l L1l L1111 _27 I I IR IR
1072 107t 100 10! 10? 1072 107t 10° 10! 102
X =w/wy X =w/wy
Les deux asymptotes obliques en haute et basse fréquence ont pour pente +20 dB par décade.
Plus le facteur de qualité est grand, plus la résonance est aigue, plus le filtre est sélectif :
la bande passante du filtre a pour largeur
1)
Ao = =
Q
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I1l.E - Filtre passe-bas du deuxiéme ordre

Motivation : le filtre passe-bas du premier ordre permet d’atténuer les signaux de haute fréquence, mais l’atté-
nuation n’est pas forcément trés marquée, et donc pas toujours suffisante pour toutes les applications.

Plus un filtre est d’ordre élevé, plus les signaux coupés le sont fortement. @

Application 5 : Filtre RLC passe-bas

1 - Montrer qualitativement que le montage ci-contre permet de réaliser un filtre

E R Lcl S passe-bas.
On admet que sa fonction de transfert s’écrit sous forme canonique
1
W) = —
1 W VLC
H(x) = ——— avec x=— et

1-x2+ 2 Y 0= l e
Q “R\cC

2 - Construire le diagramme de Bode en gain pour Q = 0,1, Q = 1/v/2, Q = 10.

3 - Quelle est la valeur optimale du facteur de qualité pour le meilleur fonctionnement du filtre ?

20

20 - ,

Ggp (dB)

—40 o

—60 |- ,

_80 - o

Lol Lol Lol Lol Ll A

1073 1072 107! 10° 10! 10° 10°
X
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Généralisation :

Lycée Corneille, MPSI 2

Q

Gag (dB)

L’asymptote oblique en haute fréquence du diagramme en gain a une pente de -40 dB par décade :
les signaux haute fréquence sont dix fois plus atténués qu’avec un filtre du premier ordre.

La fonction de transfert d’un filtre passe-bas du deuxiéme ordre a pour forme canonique

T T TTTTTTT TTTTTT T T 11T T T 17T
0 -
20 |+ -
—40 |+ -
_60 Ll Ll Ll | IR
107% 107t 10° 10!
X =w/wy

Pour un comportement optimal, le facteur de qualité du filtre doit étre choisi égal a 1/V/2.

w .
x = — avec w, la pulsation propre.

ou Wo

Hy est le gain statique.

Diagramme de Bode pour Hy =1 :

T T 1T

T T 1T

T T T T

Ag (rad)

IR

IBREERE

IR

IR

L LI

102 1072

1071

10°

10!

X =w/wy

La résonance altére le comportement passe-bas du filtre et doit étre évitée.

102

é & & Attention ! La pulsation de coupure dépend du facteur de qualité, et n’est généralement pas égale a wy ...

sauf si O = 1/V2.

IV.A - Point de vue fréquentiel

¢ Signal d’entrée sinusoidal

IV - Transformation d’un signal par un filtre

Le signal de sortie du filtre est sinusoidal, de méme pulsation que lentrée (cf. recherche de solution particuliére
de I’équation différentielle dans le cours sur la résonance) : on a donc

e(t) = Ex cos(wet + @)

—

~» utilisation de la fonction de transfert harmonique.

S=H(w=w.)E donc {

Sm = |E(a) :we)| En

s(t) = Sy cos(wet + @)

@s = Qe +arg H(w=we) = ¢ + Ap(0=we)

Espace 10

©f

s(t) = |ﬂ(w:(oe)| En cos (a)et + Qe + argI;I(w:we))

Le signal de sortie d’un filtre linéaire pour un signal d’entrée e(t) = Ey, cos(wet + @) s’écrit

Le cas échéant, |H| et arg H peuvent se déduire du diagramme de Bode :

[) ev-ne-sa |

|H(w)| = 106 (@)/20,

16/23
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e Signal d’entrée quelconque

Supposons maintenant le signal d’entrée e(t) quelconque, et écrivons-le sous forme d’un développement en
série de Fourier :

+00

e(t) =Ey + Z E, cos(nwt + ¢p,) .

n=1
Le filtre étant linéaire, d’apreés le principe de superposition, le signal de sortie s est la somme des sorties associées
a chaque harmonique du signal d’entrée :
$ Q

s(t) = |ﬂ(0)|E0 + Z |ﬂ(na))|En cos (na)t + @+ argﬂ(nw)) .

n=1

é & & Attention ! Le module et 'argument de H sont a calculer pour chaque harmonique, avec sa propre pulsation.
Il ne suffit pas de considérer une seule valeur a la pulsation du signal.

Remarque : Le résultat ci-dessus montre que le spectre des signaux d’entrée et de sortie d’un systéme
linéaire contiennent exactement les mémes harmoniques. Ce résultat peut étre utilisé expérimentalement
pour prouver la nature linéaire d’un systéme « inconnu ».

e Mise en pratique

Application 6 : Construction du signal de sortie d’un filtre

Considérons le filtre dont le diagramme de Bode est donné ci-dessous. On envoie en entrée du filtre le signal

e(t) = Ey cos (%t - %) + E, cos (a)ot + %) + Eg cos (50wt) .

Exprimer le signal de sortie.

T T T T T 1T T T T T T T T T 11T T T TTTITT T T T T T T T T T T T T T 1T
0 ul
0
—~ —~ T
— - =
8 o0l S
o —20 <
—30 | 2
I O 1 O A i A A | \HH;
1073 107 107" 10° 10" 107 1073 1072 107" 10° 10" 107
X = w/wy X = w/wy

\

IV.B - Point de vue temporel : comportement moyenneur, dérivateur, intégrateur

e Filtre moyenneur

Un filtre agit en moyenneur si le signal de sortie
est proportionnel a la valeur moyenne du signal d’entrée, ®

s(t) = Hy (e) = cte.

Réalisation pratique :
le filtre doit couper (= fortement atténuer) toutes les harmoniques, sauf la composante continue ~» utilisation d’'un

filtre passe-bas qui coupe toutes les harmoniques

Espace 11
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Un filtre passe-bas agit en moyenneur sur les signaux de fréquence f
4 trés supérieure a sa fréquence de coupure.

e Filtre dérivateur

Un filtre agit en dérivateur si le signal de sortie
® est proportionnel 4 la dérivée du signal d’entrée,
m
¥

de
s(t) = Ta.

Le paramétre 7 est appelé constante de temps du dérivateur.

Traduction graphique dans un diagramme de Bode :

Fonction de transfert d’un filtre dérivateur idéal : S = jwt E, soit H = jwr.
On en déduit donc Ggg = 20 log(wT) et Ap = /2

Espace 12

® - Si un filtre présente une pente de +20 dB/décade dans son diagramme de Bode en gain
@ et un déphasage constant de +/2
pour un certain domaine de fréquences, alors il agit en dérivateur sur ce domaine.

~> un dérivateur parfait a toute fréquence n’existe pas, car cela supposerait un gain infini, c’est-a-dire une
amplification infinie, en haute fréquence.

Réalisation pratique :

Ou a-t-on déja rencontré pareille fonction de transfert? Passe-haut du premier ordre dans la limite des basses

fréquences :
@
Ja)_ H, w
H = L—w ~ J— H()
eg _ o
1+j— ¢
We
ce qui est bien de la forme voulue avec 7 = Hy/w.
Espace 13
® Un filtre passe-haut du premier ordre agit en dérivateur sur les signaux de fréquence f
m
g

trés inférieure a sa fréquence de coupure.

En plus d’étre dérivé, le signal est fortement atténué.

é & & Attention ! Un passe-haut d’ordre 2 n’agit pas en dérivateur, méme en basse fréquence.

(@) Bv-nc-sa ] 18/23
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e Filtre intégrateur

Un filtre agit en intégrateur si le signal de sortie est proportionnel a I'intégrale du signal d’entrée, ®

: d
s(t):%/o e(hdt = d—:=%e

Le paramétre 7 est appelé constante de temps de 'intégrateur.

Traduction graphique dans un diagramme de Bode :

1 1
Fonction de transfert d’un filtre intégrateur idéal : S = — E, soit H = —.

jor = jot
On en déduit donc Ggg = —20log(wr) et Ap = —n/2

Espace 14

- Si un filtre présente une pente de —20 dB/décade dans son diagramme de Bode en gain ®
@ et un déphasage constant de —/2
pour un certain domaine de fréquences, alors il agit en intégrateur sur ce domaine.

~» un intégrateur parfait a toute fréquence n’existe pas, car cela supposerait un gain infini, c’est-a-dire une
amplification infinie, en basse fréquence.

Réalisation pratique :

Ou a-t-on déja rencontré pareille fonction de transfert ? Passe-bas du premier ordre dans la limite des hautes fré-

quences :
H, Hy
H=—0% "~
I+j— J—
C a)C
ce qui est bien de la forme voulue avec 7 = 1/Hyw,.
Espace 15
Un filtre passe-bas du premier ordre agit en intégrateur sur les signaux de fréquence f ®
@ trés supérieure a sa fréquence de coupure.
En plus d’étre intégré, le signal est fortement atténué.

é & & Attention ! Un passe-bas d’ordre 2 n’agit pas en dérivateur, méme en basse fréquence.
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Application 7 : Traitement d’un signal créneau

On envoie en entrée d’'un filtre passe-bas du premier ordre de fréquence de coupure 20 Hz le signal créneau
représenté ci-dessous, de fréquence 1kHz. Représenter qualitativement I’allure du signal de sortie.

signaux

t
V - Association de filtres
V.A - Influence de la charge sur le fonctionnement d’un filtre
) On appelle charge d’un filtre la portion de circuit a laquelle est imposée la tension de sortie.
@ Elle est décrite par son impédance de charge Z..
p p ge Zc

e Cas d’une charge résistive

Application 8 : Filtre sur une charge résistive

Considérons un filtre RC passe-bas du premier ordre branché sur une charge
purement résistive R..

1 - Pourquoi I'expression de la fonction de transfert établie précédemment H =
1/(1 + jRCw) n’est-elle plus valable ?

2 - Etablir 'expression de la fonction de transfert H’ tenant compte de la présence de la charge. La charge
résistive modifie-t-elle la nature du filtre ? sa pulsation de coupure ? son gain statique ?

3 - Comment est-il souhaitable de choisir la charge pour qu’elle n’affecte pas le comportement du filtre ?

\

Généralisation :

Les expressions des fonctions de transfert sont généralement établies en sortie ouverte,
@ et ne sont plus valables lorsque le filtre est connecté a une charge.
¢

Pour que la charge n’affecte pas le fonctionnement du filtre,
le module de son impédance doit étre le plus élevé possible.

e Lorsque la charge est un second filtre

— On souhaite réaliser un filtre passe-bande par association d’un filtre RC
R C passe-bas et d’un filtre RC passe-haut. Etablir la fonction de transfert de
= €3 R ||S I’ensemble. Est-elle égale au produit des fonctions de transfert en sortie ou-
verte des deux filtres associés ?
’E: 20/23 © Etienne Thibierge, www. etienne-thibierge.fr
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La fonction de transfert d’un filtre composé d’une association de deux filtres
4 n’est en général pas égale au produit des fonctions de transfert en sortie ouverte de chacun des filtres.

Remarque : en revanche, le résultat est vrai si l'on considére la fonction de transfert du premier filtre
chargé par le deuxieme ... mais le calcul n’est quasiment jamais posé de la sorte, puisqu’il est alors
beaucoup plus efficace de déterminer directement la fonction de transfert de I’ensemble.

V.B - Impédances d’entrée et de sortie

o Définition

quadripdle

L

t | [z

Zs

Sof

A

J

De fagon trés générale, un quadripdle linéaire peut se modéliser
I par le schéma équivalent ci-contre.
> Z. est appelée impédance d’entrée;
S > Z, est appelée impédance de sortie;
> la tension de sortie ouverte So est reliée a la tension d’entrée
par la fonction de transfert en sortie ouverte : So=HE.

~» lorsque I # 0, alors S =Sy — Zs I # Hy E.

Remarque : Méme si cela ne se voit pas sur le schéma, 'impédance d’entrée du quadripdle peut dépendre

de la charge connectée en sortie.

®» Pour approfondir : pour mieux comprendre ces notions, illustrons-les sur I'exemple du filtre RC en calculant son

impédance d’entrée et de sortie.

>Impédance d’entrée en sortie ouverte. Supposons Is = 0, c’est-a-dire que les dipoles
R et C sont tous les deux traversés par le courant d’entrée . Par la loi des mailles et la

définition de I'impédance complexe,

E=(R+ ! I d’ov Z. =R+ !
= _— ou = —_,
- jCw = = jCw

puisque Ze = E/I. d’aprés le schéma équivalent ci-dessus.

> Impédance de sortie. Supposons maintenant Is # 0. D’apres la loi des nceuds,

E-S5 . E-(1+jRCwS)
==—=-jCwS=—"—""—=
= R R

Or par définition E et Sy sont reliés par la fonction de transfert en sortie ouverte du filtre,

soit E = (1+jRCw)Sy

En substituant dans expression du courant de sortie,

1+ jRC
Is=#(50—5)
STTTR O\

et en identifiant avec le schéma de définition ou la loi des mailles impose S = Sy — Z; I;, on en déduit

puisque rien ne 'oblige.

R
Zy=——r—.
— 1+4+jRCw
On constate que 'impédance de sortie n’est pas égale a 'impédance d’entrée ... ce qui ne devrait pas nous surprendre,
]
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e Fonction de transfert d’une association de quadripdles

filtre 1 ) IS_l = 16_2 f filtre 2 15=0

> —

Zsl ZSZ

Is>!

|t
—

Sor Soz

(. J " J

Figure 4 — Association en cascade de deux quadripdles.

Fonction de transfert en sortie ouverte de I’association des deux quadripdles :

Le filtre 2 est en sortie ouverte, donc

Or par un pont diviseur de tension

d’ou on déduit

S S HE;
H:::::_
- E E E
ZeZ ZeZ
E2=;501=;H1E
= ZatZe— ZatZe—
e2 1
H:;Hle— H1H2
- s1tZep —— Zg ——
— — 1+=—
ZeZ

On peut approximer H = H; X H si |Z| < |Zez|-

[z [ s

Lycée Corneille, MPSI 2

Espace 16

de grande impédance d’entrée (a la limite infinie) et de faible impédance de sortie (a la limite nulle).
¥

la fonction de transfert de ’association est égale au produit des fonctions de transfert des deux blocs.

Pour faciliter leur mise en cascade, on cherche a réaliser des quadripéles

Lorsque deux blocs qui s’enchainent vérifient | Zs;| < |Ze2|,

[@) ov-nesh |

22/23
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Correction des applications de cours

Application 8 : Filtre sur une charge résistive

R et C ne forment plus un pont diviseur.

Méthode classique :
Re

1 1 R+R
1+RYpe

H=

R R.R
1+ —+jRCow 1+j——Cw
R, R+ R,

Le filtre reste un passe-bas du premier ordre, mais le gain statique et la pulsation de coupure sont modifiées.

Il faut avoir R/R. < 1.

Application 9 : Filtres RC en cascade
jRCw

1 — RCw? + 3jRCw

les fonctions de transfert en sortie ouverte.

: le facteur de qualité vaut 1/3 alors qu’il vaudrait 1/2 si on pouvait multiplier

Ontrouve H =
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