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.

Les paragraphes sans mention en marge sont là pour faciliter votre compréhension
ou pour votre culture mais n’ont pas forcément besoin d’être appris en tant que tel.

Ce dernier cours d’électronique constitue une introduction au domaine très vaste du traitement du signal,
que l’on peut définir l’ensemble des méthodes (physiques, mathématiques et numériques) permettant d’analyser,
transformer et interpréter des signaux (audio, images, données). Il vise à extraire de l’information utile, réduire le
bruit parasite, améliorer la qualité ou encore faciliter la transmission.

1/23 © Étienne Thibierge, www.etienne-thibierge.fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
www.etienne-thibierge.fr
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I - Compléments mathématiques sur les signaux périodiques
Un signal physique ayant une durée finie, il peut toujours être vu comme une période d’un signal périodique,

en le répliquant à l’identique au delà de l’intervalle temporel sur lequel il est réellement défini. Les considérations
développées dans ce paragraphe sont donc de portée très générale.

I.A - Développement de Fourier d’un signal périodique
• Définition

R
Tout signal 𝑦 périodique de pulsation 𝜔 et de forme quelconque

peut se décomposer en une somme de signaux sinusoïdaux de pulsations multiples de 𝜔 .

𝑦 (𝑡) = 𝑌0 +
+∞∑︁
𝑛=1

𝑌𝑛 cos(𝑛𝜔𝑡 + 𝜑𝑛) avec 𝑌𝑛 ≥ 0 et 𝜑𝑛 ∈ ] − 𝜋, 𝜋]

𝑦 (𝑡) = 𝑌0 +
+∞∑︁
𝑛=1

𝐴𝑛 cos(𝑛𝜔𝑡) +
+∞∑︁
𝑛=1

𝐵𝑛 sin(𝑛𝜔𝑡) avec 𝐴𝑛 et 𝐵𝑛 quelconques

Cette écriture est appelée développement en série de Fourier ou décomposition de Fourier de 𝑦 (𝑡).
⊲ Les termes du développement de Fourier sont appelésharmoniques du signal, repérées par leur rang𝑛 :
𝑌𝑛 , 𝜔𝑛 = 𝑛𝜔 et 𝜑𝑛 sont l’amplitude, la pulsation et la phase initiale de l’harmonique de rang 𝑛.

⊲ Le terme constant 𝑌0, correspondant à l’harmonique de rang 0 et de pulsation nulle, est appelé compo-
sante continue du signal.

⊲ L’harmonique de rang 1, de même pulsation que le signal lui-même, est appelée fondamental.
⊲ Le spectre (d’amplitude) du signal 𝑦 (𝑡) est la représentation des amplitudes 𝑌𝑛 des différentes harmo-
niques en fonction de leur pulsation 𝜔𝑛 = 𝑛𝜔 ou le plus souvent de leur fréquence 𝑓𝑛 = 𝜔𝑛/2𝜋 .

Remarque : le terme constant 𝑌0 peut être inclus dans la somme comme un cosinus de pulsation nulle,
correspondant au terme 𝑛 = 0.

➽ Pour approfondir : Les sommes infinies doivent s’interpréter comme d’habitude, c’est-à-dire comme des limites
de sommes finies dont la borne du haut tend vers l’infini, avec comme d’habitude une difficulté mathématique quant à
l’existence de la limite. On peutmontrer que la convergence est assurée pour toute fonction 𝑓 périodique de période𝑇 telle
que la fonction |𝑓 |2 soit intégrable sur [0,𝑇 ]. Les fonctions « usuelles » représentant des signaux physiques admettent
toutes un développement en série de Fourier, mais ce n’est pas le cas, par exemple, de la fonction inverse.
En notant 𝑇 = 2𝜋/𝜔 la période du signal, les coefficients de Fourier sont donnés par

𝑌0 =
1
𝑇

ˆ 𝑇

0
𝑦 (𝑡) d𝑡

et pour tout 𝑛 > 0,

𝐴𝑛 =
2
𝑇

ˆ 𝑇

0
𝑦 (𝑡) cos(𝑛𝜔𝑡) d𝑡 et 𝐵𝑛 =

2
𝑇

ˆ 𝑇

0
𝑦 (𝑡) sin(𝑛𝜔𝑡) d𝑡 .

On peut ensuite remonter à𝑈𝑛 et 𝜑𝑛 par de la trigonométrie classique :

𝑌𝑛 =
√︁
𝐴 2
𝑛 + 𝐵 2

𝑛 et tan𝜑𝑛 = −𝐵𝑛
𝐴𝑛

.

Le retour à 𝜑𝑛 par la fonction arctan demande d’analyser les signes de 𝐴𝑛 et 𝐵𝑛 . ■

• Illustration
Le développement en série de Fourier d’un signal créneau de valeurs 0 et 𝐸 s’écrit

𝑦 (𝑡) = 𝐸

2 +
2𝐸
𝜋

∑︁
𝑛 impairs

1
𝑛
sin(𝑛𝜔𝑡) = 𝐸

2 +
2𝐸
𝜋

∞∑︁
𝑝=0

1
2𝑝 + 1 sin

(
(2𝑝 + 1)𝜔𝑡

)
.
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Synthèse du signal avec Python : on travaille avec des tableaux numpy, mais des listes pourraient tout aussi bien
convenir. Le signal obtenu pour différents nombres d’harmoniques est représenté figure 1.

M
1 import numpy as np
2 import matplotlib . pyplot as plt
3 plt.close(’all ’)

5 # Paramètres du signal
6 T = 1 # unité arbitraire
7 w = 2 * np.pi / T # pulsation
8 t = np. linspace (-T, T, 1000) # temps

10 E = 1 # amplitude du signal

12 N = 3 # nombre de termes de la série de Fourier
13 y = E/2 * np. ones_like (t) # initialisation du signal reconstitu é

15 f o r p i n range (N):
16 y += (2 * E / (np.pi * (2*p + 1))) * np.sin ((2*p + 1) * w * t)

18 plt. figure ()
19 plt.plot(t,y)
20 plt. xlabel (’t (période unité)’)
21 plt. ylabel (’y(t)’)
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Figure 1 – Synthèse de Fourier d’un signal créneau.

• Contenu physique des différentes harmoniques
Observation :
⊲ Synthèse spectrale ne prenant en compte que les premières harmoniques : rend l’allure globale du signal, les
perturbations se limitent aux discontinuités
rend l’allure globale du signal, les perturbations se limitent aux discontinuités
rend l’allure globale du signal, les perturbations se limitent aux discontinuités
toto Espace 1

⊲ Synthèse spectrale excluant les premières harmoniques : l’allure globale du signal est perdue, seules demeurent
visibles les discontinuités
l’allure globale du signal est perdue, seules demeurent visibles les discontinuités
l’allure globale du signal est perdue, seules demeurent visibles les discontinuités
toto Espace 2
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Figure 2 – Synthèse de Fourier d’un signal créneau. Gauche : seules les 30 premières harmoniques sont prises en
compte. Droite : les 30 premières harmoniques sont éliminées de la synthèse spectrale.

Généralisation : .

Q
Les premières harmoniques d’un signal codent son allure générale.

Les harmoniques d’ordre élevé codent ses variations rapides : discontinuités, bruit.

I.B - Valeur moyenne
• Définition

R
On appelle valeur moyenne d’un signal 𝑦 de période 𝑇

⟨𝑦⟩ = 1
𝑇

ˆ 𝑡0+𝑇

𝑡0

𝑦 (𝑡) d𝑡 .

Elle ne dépend pas de l’instant initial 𝑡0 utilisé pour le calcul.
Le moyennage est une opération linéaire : pour deux signaux 𝑦1(𝑡) et 𝑦2(𝑡) et deux constantes 𝜆1 et 𝜆2,

⟨𝜆1𝑦1 + 𝜆2𝑦2⟩ = 𝜆1 ⟨𝑦1⟩ + 𝜆2 ⟨𝑦2⟩

{ 𝑡0 peut donc être choisi de façon à simplifier le calcul de l’intégrale.

Démonstration qualitative : Considérons le signal 𝑦 (𝑡) représenté figure 3, dont on cherche à estimer la valeur
moyenne. Pour l’approcher, on peut commencer par échantillonner 𝑁 valeurs équiréparties au sein d’une période,
séparées d’une durée Δ𝑡 , et calculer leur moyenne,

⟨𝑦⟩ ≃ 1
𝑁

𝑁−1∑︁
𝑛=0

𝑦 (𝑡𝑛) = 1
𝑇

𝑁−1∑︁
𝑛=0

𝑦 (𝑡𝑛)Δ𝑡 ,

puisque Δ𝑡 =𝑇 /𝑁 , soit 𝑁 =𝑇 /Δ𝑡 . Graphiquement, 𝑦 (𝑡𝑛)Δ𝑡 s’interprète comme l’aire d’un rectangle de largeur Δ𝑡
et de hauteur 𝑦 (𝑡𝑛), comme schématisé figure 3. La moyenne s’obtient dans la limite 𝑁 → ∞, où la somme des
aires des rectangles tend vers l’aire sous la courbe représentant le signal, et où la somme tend vers l’intégrale.

•
•
•
•
•
•
•
•

𝑡0 𝑡𝑁
𝑡

𝑦

Δ𝑡

𝑇

Figure 3 – Moyenne d’un signal périodique.
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• Signal sinusoïdal

R
Un signal sinusoïdal est de moyenne nulle.
⟨cos(𝜔𝑡 + 𝜑)⟩ = ⟨sin(𝜔𝑡 + 𝜑)⟩ = 0

Démonstration : i

𝑡

𝑦

𝑇

2

𝑇

Qualitativement : la courbe d’une fonction sinus ou cosinus est symétrique, et passe
autant de temps au dessus qu’au dessous de l’axe des abscisses.

Par le calcul : un sinus n’est qu’un cosinus déphasé de −𝜋/2, il suffit donc de mon-
trer le résultat pour le cosinus. D

Posons 𝑦 (𝑡) = 𝑌m cos(𝜔𝑡 + 𝜑). Alors

⟨𝑦 (𝑡)⟩ = 𝑌m
𝑇

ˆ 𝑇

0
cos(𝜔𝑡 + 𝜑) d𝑡

=
𝑌m
𝑇

[
1
𝜔
sin(𝜔𝑡 + 𝜑)

]𝑇
0

=
𝑌m
2𝜋

(
sin(2𝜋 + 𝜑) − sin(2𝜋)

)
car 𝜔 =

2𝜋
𝑇

⟨𝑦 (𝑡)⟩ = 0

Posons 𝑦 (𝑡) = 𝑌m cos(𝜔𝑡 + 𝜑). Alors

⟨𝑦 (𝑡)⟩ = 𝑌m
𝑇

ˆ 𝑇

0
cos(𝜔𝑡 + 𝜑) d𝑡

=
𝑌m
𝑇

[
1
𝜔
sin(𝜔𝑡 + 𝜑)

]𝑇
0

=
𝑌m
2𝜋

(
sin(2𝜋 + 𝜑) − sin(2𝜋)

)
car 𝜔 =

2𝜋
𝑇

⟨𝑦 (𝑡)⟩ = 0

toto Espace 3

• Signal quelconque

RLa moyenne d’un signal périodique quelconque est égale à sa composante continue.

DDémonstration : Par linéarité de la moyenne,

⟨𝑦 (𝑡)⟩ = ⟨𝑌0⟩ +
+∞∑︁
𝑛=1
⟨𝑌𝑛 cos(𝑛𝜔𝑡 + 𝜑𝑛)⟩

= 𝑌0 +
+∞∑︁
𝑛=1

𝑌𝑛
𝑇

[
1
𝑛𝜔

sin(𝑛𝜔𝑡 + 𝜑𝑛)
]𝑇
0

= 𝑌0 +
+∞∑︁
𝑛=1

𝑌𝑛
2𝑛𝜋

(
sin(2𝑛𝜋 + 𝜑𝑛) − sin(𝜑𝑛)

)
car 𝜔 =

2𝜋
𝑇

⟨𝑦 (𝑡)⟩ = 𝑌0 .
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Par linéarité de la moyenne,

⟨𝑦 (𝑡)⟩ = ⟨𝑌0⟩ +
+∞∑︁
𝑛=1
⟨𝑌𝑛 cos(𝑛𝜔𝑡 + 𝜑𝑛)⟩

= 𝑌0 +
+∞∑︁
𝑛=1

𝑌𝑛
𝑇

[
1
𝑛𝜔

sin(𝑛𝜔𝑡 + 𝜑𝑛)
]𝑇
0

= 𝑌0 +
+∞∑︁
𝑛=1

𝑌𝑛
2𝑛𝜋

(
sin(2𝑛𝜋 + 𝜑𝑛) − sin(𝜑𝑛)

)
car 𝜔 =

2𝜋
𝑇

⟨𝑦 (𝑡)⟩ = 𝑌0 .

toto Espace 4

I.C - Valeur efficace
• Définition

R
On appelle valeur efficace d’un signal 𝑦 de période 𝑇

𝑌eff =
√︁
⟨𝑦2⟩ =

√︄
1
𝑇

ˆ 𝑡0+𝑇

𝑡0

𝑦 (𝑡)2 d𝑡

� � � Attention ! La valeur efficace n’est évidemment pas linéaire !

Q
Intérêt :
⊲ la valeur moyenne d’un signal sinusoïdal étant toujours nulle, elle ne nous dit pas s’il est « grand » ou pas, au
contraire de la valeur efficace ;

⊲ les grandeurs énergétiques sont systématiquement reliées au carré des signaux, la valeur efficace d’un signal est
une grandeur qui y est adaptée.

Remarque : L’usage en électronique de puissance est de quantifier les signaux non pas par leur ampli-
tude, mais directement par leur valeur efficace. Ainsi, la tension secteur fournie par EDF a une valeur
efficace de 230 V et une fréquence de 50Hz.

• Signal sinusoïdal

R
La valeur efficace 𝑌eff d’un signal sinusoïdal 𝑦 (𝑡) est reliée à son amplitude 𝑌m par

𝑌eff =
𝑌m√
2

D Démonstration : Posons 𝑦 (𝑡) = 𝑌m cos(𝜔𝑡 + 𝜑), donc 𝑦 (𝑡)2 = 𝑌 2
m
2

(
1 + cos(2𝜔𝑡 + 2𝜑)

)
. Ainsi,

𝑌 2
eff =

〈
𝑦 (𝑡)2〉 = 𝑌 2

m
2 +

1
2 ⟨cos(2𝜔𝑡 + 2𝜑)⟩ =

𝑌 2
m
2 + 0

Posons 𝑦 (𝑡) = 𝑌m cos(𝜔𝑡 + 𝜑), donc 𝑦 (𝑡)2 = 𝑌 2
m
2

(
1 + cos(2𝜔𝑡 + 2𝜑)

)
. Ainsi,

𝑌 2
eff =

〈
𝑦 (𝑡)2〉 = 𝑌 2

m
2 +

1
2 ⟨cos(2𝜔𝑡 + 2𝜑)⟩ =

𝑌 2
m
2 + 0

toto Espace 5
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• Signal quelconque

R
Théorème de Parseval-Plancherel :

Le carré de la valeur efficace d’un signal périodique quelconque
est égal à la somme des carrés des valeurs efficaces de ses harmoniques :

si 𝑦 (𝑡) =
+∞∑︁
𝑛=0

𝑌𝑛 cos(𝑛𝜔𝑡 + 𝜑𝑛) alors
〈
𝑦 (𝑡)2〉 = +∞∑︁

𝑛=0

〈
𝑦𝑛 (𝑡)2

〉
=
1
2

+∞∑︁
𝑛=0

𝑌 2
𝑛 .

Démonstration : en utilisant le développement en série de Fourier,

𝑦 (𝑡)2 =
∞∑︁
𝑝=0

𝑦𝑝 (𝑡) ×
+∞∑︁
𝑞=0

𝑦𝑞 (𝑡) =
+∞∑︁
𝑝=0

(
𝑦𝑝 (𝑡)2 +

+∞∑︁
𝑞=0
𝑞≠𝑝

𝑦𝑝 (𝑡)𝑦𝑞 (𝑡)
)

donc par passage à la moyenne 〈
𝑦 (𝑡)2〉 = +∞∑︁

𝑝=0

( 〈
𝑦𝑝 (𝑡)2

〉 + +∞∑︁
𝑞=0
𝑞≠𝑝

〈
𝑦𝑝 (𝑡)𝑦𝑞 (𝑡)

〉 )
En linéarisant le produit de cosinus intervenant dans la deuxième somme,

𝑦𝑝 (𝑡)𝑦𝑞 (𝑡) = 𝑌𝑝𝑌𝑞 cos(𝑝𝜔𝑡 + 𝜑𝑝) cos(𝑞𝜔𝑡 + 𝜑𝑞) =
𝑌𝑝𝑌𝑞

2

(
cos((𝑝 + 𝑞)𝜔𝑡 + 𝜑𝑝 + 𝜑𝑞) + cos((𝑝 − 𝑞)𝜔𝑡 + 𝜑𝑝 − 𝜑𝑞)

)
Or nous avons montré précédemment que ∀𝑛 ≠ 0, ⟨cos(𝑛𝜔𝑡 + 𝜑⟩ = 0 : tous les termes de la deuxième somme sont
donc nuls, puisqu’elle est restreinte aux indices 𝑝 et 𝑞 différents. On a donc bien〈

𝑦 (𝑡)2〉 = +∞∑︁
𝑛=0

〈
𝑦𝑛 (𝑡)2

〉
.

II - Caractérisation d’un filtre linéaire
II.A - Notion de filtre linéaire

Q
On appelle filtre un système permettant de transmettre dans un signal de sortie 𝑠
de l’information issue d’un signal d’entrée 𝑒 sélectionnée par un critère fréquentiel.

Filtre

entrée 𝑒 (𝑡) sortie 𝑠 (𝑡)

Exemples :
⊲ Un récepteur radio reçoit toutes les ondes à la fois, mais doit être capable de sélectionner uniquement
une bande de fréquence précise correspondant à la station écoutée.

⊲ Une chaîne Hi-Fi doit envoyer les fréquences graves, intermédiaires ou aiguës vers les hauts-parleurs
dédiés, et donc être capable de les séparer.

⊲ Les signaux issus d’un capteur peuvent être perturbés par un bruit aléatoire qu’il faut éliminer.

filtre𝑒 𝑠
Un filtre est un quadripôle, c’est-à-dire qu’il possède quatre bornes : deux

sont dédiées au signal d’entrée, deux autres au signal de sortie.

R
Un filtre est dit linéaire s’il vérifie le principe de superposition :

si à deux entrées 𝑒1(𝑡) et 𝑒2(𝑡) il associe respectivement les sorties 𝑠1(𝑡) et 𝑠2(𝑡)
alors la sortie associée à l’entrée 𝑒 (𝑡) = 𝜆1𝑒1(𝑡) + 𝜆2𝑒2(𝑡) est 𝑠 (𝑡) = 𝜆1𝑠1(𝑡) + 𝜆2𝑠2(𝑡).
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Critère d’identification : un filtre pour lequel 𝑒 (𝑡) et 𝑠 (𝑡) sont reliés par une équation différentielle linéaire à
coefficients constants est un filtre linéaire.
{ c’est le cas pour tous les filtres que nous rencontrerons cette année.

De plus, nous nous limiterons aux filtres passifs analogiques :
⊲ filtre passif : aucun générateur ni composant alimenté à l’intérieur du filtre, par opposition à un filtre actif ;
⊲ filtre analogique : agit directement sur les tensions électriques, sans numérisation.

Remarque : Le filtrage moderne est de plus en plus souvent numérique : après acquisition, le signal est
traité numériquement par un code informatique.

II.B - Fonction de transfert harmonique
Nous expliquerons par la suite que le signal de sortie d’un filtre linéaire peut se calculer pour une entrée

quelconque à condition de connaître le comportement du filtre pour n’importe quelle entrée sinusoïdale.
{ on se place donc dans le cas d’une entrée sinusoïdale, ce qui permet de réinvestir toute la puissance des

représentations complexes.

R
On appelle fonction de transfert harmonique d’un filtre linéaire

le rapport des amplitudes complexes des signaux d’entrée et de sortie en fonction de la pulsation.

𝐻 (𝜔) = 𝑆

𝐸
.

• Interprétation
Notons les signaux

𝑒 (𝑡) = 𝐸m cos(𝜔𝑡 + 𝜑𝑒) et 𝑠 (𝑡) = 𝑆m cos(𝜔𝑡 + 𝜑𝑠)
Amplitudes complexes : 𝐸 = 𝐸m ej𝜑𝑒 et 𝑆 = 𝑆m ej𝜑𝑠

Amplitudes complexes : 𝐸 = 𝐸m ej𝜑𝑒 et 𝑆 = 𝑆m ej𝜑𝑠

Amplitudes complexes : 𝐸 = 𝐸m ej𝜑𝑒 et 𝑆 = 𝑆m ej𝜑𝑠

toto Espace 6

⊲ Module |𝐻 | :
��𝐻 �� = |𝑆 ||𝐸 | = 𝑆m

𝐸m
{ rapport des amplitudes.��𝐻 �� = |𝑆 ||𝐸 | = 𝑆m

𝐸m
{ rapport des amplitudes.��𝐻 �� = |𝑆 ||𝐸 | = 𝑆m

𝐸m
{ rapport des amplitudes.

toto Espace 7

⊲ Argument arg𝐻 : arg𝐻 = arg𝑆 − arg𝐸 = 𝜑𝑠 − 𝜑𝑒 { déphasage de la sortie par rapport à l’entrée.
arg𝐻 = arg𝑆 − arg𝐸 = 𝜑𝑠 − 𝜑𝑒 { déphasage de la sortie par rapport à l’entrée.
arg𝐻 = arg𝑆 − arg𝐸 = 𝜑𝑠 − 𝜑𝑒 { déphasage de la sortie par rapport à l’entrée.
toto Espace 8

R
Le module de la fonction de transfert est le rapport entre les amplitudes des signaux de sortie et d’entrée ;

son argument est le déphasage du signal de sortie par rapport au signal d’entrée.

|𝐻 | = 𝑆m
𝐸m

et arg𝐻 = 𝜑𝑠 − 𝜑𝑒 = Δ𝜑𝑠/𝑒

8/23 © Étienne Thibierge, www.etienne-thibierge.fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
www.etienne-thibierge.fr


Cours E5 : Filtrage Lycée Corneille, MPSI 2

• Lien à l’équation différentielle

Application 1 : Circuit RC

𝑅

𝐶𝑒 𝑠

Considérons le filtre réalisé par le circuit RC série, en interprétant la tension
aux bornes du condensateur comme étant le signal de sortie du filtre et la tension
du générateur comme étant l’entrée.
1 - Établir l’équation différentielle du circuit reliant 𝑒 et 𝑠 .
2 - En travaillant en représentation complexe, établir la fonction de transfert 𝐻 .
3 - Retrouver l’équation différentielle à partir de la fonction de transfert.

Généralisation : comme l’équation différentielle et la fonction de transfert décrivent le même système physique,
elles ne sont pas indépendantes l’une de l’autre.

RL’équation différentielle du circuit et sa fonction de transfert
se déduisent l’une de l’autre par la correspondance

× j𝜔 ←→ d
d𝑡

Remarque : L’équation différentielle ne fait intervenir que des dérivées, jamais des primitives. Il est
donc nécessaire d’écrire la fonction de transfert comme un polynôme en j𝜔 avant d’identifier, sans qu’il
ne reste de division.

Remarque : il existe aussi une correspondance avec la fonction de transfert dans le domaine de Laplace,

× j𝜔 ←→ d
d𝑡 ←→ × 𝑝

R
L’ordre de la dérivée la plus élevée dans l’équation différentielle,

ou de façon équivalente la puissance de j𝜔 la plus élevée dans la fonction de transfert,
est appelé ordre du filtre (ou plus largement du système).

II.C - Diagramme de Bode

Un peu d’histoire : Hendrik Wade Bode (1905-1982) est un ingénieur et mathématicien américain
ayant travaillé aux Bell Laboratories. Il a joué un rôle central dans le développement de la théorie
fréquentielle des systèmes linéaires. Après avoir décroché un doctorat à 24 ans, ce qui est particuliè-
rement précoce pour l’époque, c’est vers la fin des années 1930 qu’il a proposé les diagrammes qui
portent son nom, outils graphiques essentiels pour l’analyse de la stabilité et de la robustesse des
systèmes à rétroaction, dont l’utilisation s’est diffusée à partir des années 1940. Bode a aussi formulé
le théorème intégral de Bode, établissant des limites fondamentales du filtrage et de l’amplification.
Ses travaux ont structuré l’automatique moderne et les télécommunications.

R
Le diagramme de Bode d’un filtre est une (double) représentation graphique

de sa fonction de transfert en fonction de la pulsation :
diagramme en gain : 𝐺dB en fonction de 𝜔 diagramme en phase : arg𝐻 en fonction de 𝜔 .

L’axe des pulsations est gradué en échelle logarithmique.
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• Gain en décibel

R
On appelle gain en décibel la grandeur définie par

𝐺dB(𝜔) = 20 log|𝐻 (𝜔) | ⇐⇒ |𝐻 (𝜔) | = 10𝐺dB (𝜔 )/20.

Remarque : Le gain en décibel est parfois appelé simplement « gain » ... mais le « gain » sans autre
précision peut aussi désigner |𝐻 |, selon le contexte.

R
Signe du gain : 𝐺dB < 0 ⇐⇒ |𝐻 | < 1 donc le signal de sortie est atténué par rapport au signal d’entrée, de
même 𝐺dB > 0 signifie que le signal de sortie est amplifié par rapport au signal d’entrée.
𝐺dB < 0 ⇐⇒ |𝐻 | < 1 donc le signal de sortie est atténué par rapport au signal d’entrée, de même𝐺dB > 0 signifie
que le signal de sortie est amplifié par rapport au signal d’entrée.
𝐺dB < 0 ⇐⇒ |𝐻 | < 1 donc le signal de sortie est atténué par rapport au signal d’entrée, de même𝐺dB > 0 signifie
que le signal de sortie est amplifié par rapport au signal d’entrée.
toto Espace 9

Ordres de grandeur : .

Q
𝐺dB |𝐻 |
−1 dB 0,9
−3 dB 0,7 ≃ 1/√2
−10 dB ≃ 0,3
−20 dB 1/10
−40 dB 1/100

{ des faibles variations de gain en décibel peuvent se traduire par de très fortes mo-
difications d’amplitude du signal !

• Échelle logarithmique
Les axes ne sont pas gradués de 1 en 1, mais de puissance de dix en puissance de dix. Lorsque deux nombres

diffèrent d’un facteur 10, c’est-à-dire qu’ils sont distants d’une unité en échelle logarithmique, ils sont dits séparés
d’une décade.

𝑋
100 101 102 103 104 105

une décade
log𝑋

0 1 2 3 4 5

une décade

Q
{ intérêt : une échelle logarithmique permet de représenter simultanément des valeurs très faibles et très

élevées, qui diffèrent de plusieurs ordres de grandeur.

II.D - Bande passante

R
On appelle bande passante d’un filtre la gamme de fréquences pour laquelle les signaux sont transmis.

Elle est définie conventionnellement par le critère

𝜔 ∈ BP ⇐⇒ |𝐻 (𝜔) | > 𝐻réf√
2
⇐⇒ 𝐺dB(𝜔) > 𝐺réf − 3 dB .

Le gain de référence 𝐺réf = 20 log(𝐻réf) dépend du filtre envisagé.
La/les limite(s) de la bande passante définissent la/les pulsation(s) de coupure du filtre.

Remarque : Compte tenu de la définition des pulsations de coupure, on parle parfois de « bande passante
à –3 dB ».

10/23 © Étienne Thibierge, www.etienne-thibierge.fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
www.etienne-thibierge.fr


Cours E5 : Filtrage Lycée Corneille, MPSI 2

III - Exemples fondamentaux
III.A - Méthodes d’étude d’un filtre
• Déterminer la nature du filtre par équivalence de dipôles
Rappel : dipôles équivalents.

⊲ Basse fréquence : condensateur⇐⇒ interrupteur ouvert ; bobine⇐⇒ fil ;
⊲ Haute fréquence : condensateur⇐⇒ fil ; bobine⇐⇒ interrupteur ouvert.

Méthode :
➊ Dessiner (au moins dans sa tête) deux schémas équivalents du filtre, en haute et basse fréquence ;
➋ Déterminer 𝑆 en fonction de 𝐸 sur ces schémas ;
➌ Si 𝑆 = 𝐸 alors le signal est transmis pour la gamme de fréquence correspondante, si 𝑆 = 0 alors il est coupé.

• Établir la fonction de transfert sous forme canonique
Méthode :

➊ Exprimer 𝐻 en fonction des composants avec un pont diviseur ;
➋ Multiplier le numérateur et le dénominateur par la quantité permettant de faire apparaître les 1 « aux bons

endroits » ;
➌ Identifier les paramètres de la forme canonique.

• Tracer un diagramme de Bode
Le tracé commence toujours par celui d’un diagramme asymptotique (= affine par morceaux) auquel on super-

pose l’allure du diagramme réel. Pour les diagrammes théoriques, il est fréquent d’utiliser une pulsation réduite
en abscisse.

➊ Étudier séparément les limites basse et haute fréquence ;
➋ Pour chaque limite, commencer par calculer la fonction de transfert équivalente en ne conservant que les

termes dominants du numérateur et du dénominateur ;
➌ Dans un second temps, calculer le module et l’argument pour obtenir les équations des asymptotes ;
➍ Pour un deuxième ordre, l’allure du diagramme réel est précisée en calculant explicitement la valeur exacte

en 𝜔 = 𝜔0 (existence éventuelle d’une résonance).
� � � Attention ! Exprimer le module et l’argument en toute généralité pour prendre des équivalents dans un
second temps alourdit énormément les calculs : à ne pas faire ...

III.B - Filtre passe-bas du premier ordre

M
Application 2 : Filtre RC passe-bas

Le circuit RC étudié dans l’application 1 est un filtre passe-bas du premier ordre.
1 - En raisonnant par équivalence de dipôle, montrer que les signaux basse fréquence sont transmis par le filtre,
au contraire des signaux haute fréquence.
2 - Identifier les paramètres 𝐻0 et 𝜔c permettant d’écrire la fonction de transfert sous forme canonique

𝐻 (𝜔) = 𝐻0

1 + j 𝜔
𝜔c

.

3 - Construire le diagramme de Bode en gain du filtre en fonction de 𝑥 = 𝜔/𝜔c.
4 - Déterminer la bande passante du filtre et justifier la dénomination de « passe-bas ».
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10−3 10−2 10−1 100 101 102 103

20

0

−20

−40

−60

𝑥

𝐺
dB

(d
B)

Généralisation : .

R
La fonction de transfert d’un filtre passe-bas du premier ordre a pour forme canonique

𝐻 =
𝐻0

1 + j 𝜔
𝜔c

où
{
𝜔c est la pulsation de coupure.
𝐻0 est le gain statique.

Diagramme de Bode pour 𝐻0 = 1 :

10−2 10−1 100 101 102

0

−10

−20

𝑥 = 𝜔/𝜔c

𝐺
dB

(d
B)

10−2 10−1 100 101 102

0

𝑥 = 𝜔/𝜔c

Δ
𝜑
(ra

d)

−𝜋/2

L’asymptote oblique en haute fréquence du diagramme en gain a une pente de −20 dB par décade.
Sa bande passante est l’intervalle [0, 𝜔c].

III.C - Filtre passe-haut du premier ordre

M
Application 3 : Filtre RC passe-haut

𝐶 𝑅𝐸 𝑆

1 -Montrer qualitativement que le montage ci-contre permet de réaliser un filtre
passe-haut.
2 - Établir sa fonction de transfert et l’écrire sous forme canonique,

𝐻 (𝜔) =
j 𝜔
𝜔c

𝐻0

1 + j 𝜔
𝜔c

.

3 - Construire le diagramme de Bode en gain du filtre en fonction de la pulsation réduite.
4 - Déterminer la bande passante du filtre et justifier sa dénomination.
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10−3 10−2 10−1 100 101 102 103

20

0

−20

−40

−60

𝑥

𝐺
dB

(d
B)

Généralisation : .

Q
La fonction de transfert d’un filtre passe-haut du premier ordre a pour forme canonique

𝐻 =
j 𝜔
𝜔c

𝐻0

1 + j 𝜔
𝜔c

=
𝐻0

1 − j𝜔c
𝜔

où 𝜔c est la pulsation de coupure.

Diagramme de Bode pour 𝐻0 = 1 :

10−2 10−1 100 101 102

0

−10

−20

𝑥 = 𝜔/𝜔c

𝐺
dB

(d
B)

10−2 10−1 100 101 102
0

1

2

𝑥 = 𝜔/𝜔c

Δ
𝜑
(ra

d)

𝜋/2

L’asymptote oblique en basse fréquence du diagramme en gain a une pente de 20 dB par décade.
Sa bande passante est l’intervalle [𝜔c,+∞[.

III.D - Filtre passe-bande

M
Application 4 : Filtre RLC passe-bande

𝐶
𝐿
𝑅𝐸 𝑆

1 -Montrer qualitativement que le montage ci-contre permet de réaliser un filtre
passe-bande.

2 - Établir sa fonction de transfert et l’écrire sous forme canonique 𝐻 (𝑥) = 𝐻0

1 + j𝑄
(
𝑥 − 1

𝑥

) .
3 - Construire le diagramme de Bode en gain pour 𝑄 = 0,1 et 𝑄 = 10.
4 - Déterminer la bande passante du filtre. Comment choisir le facteur de qualité ?
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10−3 10−2 10−1 100 101 102 103

20

0

−20

−40

−60

−80

𝑥

𝐺
dB

(d
B)

Généralisation : .

R
La fonction de transfert d’un filtre passe-bande du deuxième ordre a pour forme canonique

𝐻 (𝑥) = 𝐻0

1 + j𝑄
(
𝑥 − 1

𝑥

) =

j𝑥
𝑄
𝐻0

1 − 𝑥2 + j𝑥
𝑄

où 𝑥 =
𝜔

𝜔0

𝜔0 est appelée pulsation centrale, propre ou de résonance.
Diagramme de Bode pour 𝐻0 = 1 :

10−2 10−1 100 101 102

20

0

−20
−40
−60

𝑥 = 𝜔/𝜔0

𝐺
dB

(d
B)

10−2 10−1 100 101 102
−2
−1
0

1

2

𝑥 = 𝜔/𝜔0

Δ
𝜑
(ra

d)

𝜋/2

−𝜋/2

Les deux asymptotes obliques en haute et basse fréquence ont pour pente ±20 dB par décade.
Plus le facteur de qualité est grand, plus la résonance est aigue, plus le filtre est sélectif :

la bande passante du filtre a pour largeur

Δ𝜔 =
𝜔0
𝑄

.
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III.E - Filtre passe-bas du deuxième ordre
Motivation : le filtre passe-bas du premier ordre permet d’atténuer les signaux de haute fréquence, mais l’atté-
nuation n’est pas forcément très marquée, et donc pas toujours suffisante pour toutes les applications.

QPlus un filtre est d’ordre élevé, plus les signaux coupés le sont fortement.

MApplication 5 : Filtre RLC passe-bas

𝑅 𝐿
𝐶𝐸 𝑆

1 -Montrer qualitativement que le montage ci-contre permet de réaliser un filtre
passe-bas.

On admet que sa fonction de transfert s’écrit sous forme canonique

𝐻 (𝑥) = 1

1 − 𝑥2 + j𝑥
𝑄

avec 𝑥 =
𝜔

𝜔0
et


𝜔0 =

1√
𝐿𝐶

𝑄 =
1
𝑅

√︂
𝐿

𝐶

2 - Construire le diagramme de Bode en gain pour 𝑄 = 0,1, 𝑄 = 1/√2, 𝑄 = 10.
3 - Quelle est la valeur optimale du facteur de qualité pour le meilleur fonctionnement du filtre?

10−3 10−2 10−1 100 101 102 103

20

0

−20

−40

−60

−80

𝑥

𝐺
dB

(d
B)
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Généralisation : .

Q
La fonction de transfert d’un filtre passe-bas du deuxième ordre a pour forme canonique

𝐻 (𝑥) = 𝐻0

1 − 𝑥2 + j𝑥
𝑄

où

𝑥 =

𝜔

𝜔0
avec 𝜔0 la pulsation propre.

𝐻0 est le gain statique.

Diagramme de Bode pour 𝐻0 = 1 :

10−2 10−1 100 101 102

20

0

−20
−40
−60

𝑥 = 𝜔/𝜔0

𝐺
dB

(d
B)

10−2 10−1 100 101 102
−3

−2

−1

0

𝑥 = 𝜔/𝜔0

Δ
𝜑
(ra

d)
L’asymptote oblique en haute fréquence du diagramme en gain a une pente de −40 dB par décade :

les signaux haute fréquence sont dix fois plus atténués qu’avec un filtre du premier ordre.
La résonance altère le comportement passe-bas du filtre et doit être évitée.

Pour un comportement optimal, le facteur de qualité du filtre doit être choisi égal à 1/√2.

� � � Attention ! La pulsation de coupure dépend du facteur de qualité, et n’est généralement pas égale à 𝜔0 ...
sauf si 𝑄 = 1/√2.

IV - Transformation d’un signal par un filtre
IV.A - Point de vue fréquentiel
• Signal d’entrée sinusoïdal

Le signal de sortie du filtre est sinusoïdal, de même pulsation que l’entrée (cf. recherche de solution particulière
de l’équation différentielle dans le cours sur la résonance) : on a donc

𝑒 (𝑡) = 𝐸m cos(𝜔𝑒𝑡 + 𝜑𝑒) ↦−→ 𝑠 (𝑡) = 𝑆m cos(𝜔𝑒𝑡 + 𝜑𝑠)

{ utilisation de la fonction de transfert harmonique.

𝑆 = 𝐻 (𝜔 =𝜔𝑒) 𝐸 donc
{
𝑆m =

��𝐻 (𝜔 =𝜔𝑒)
��𝐸m

𝜑𝑠 = 𝜑𝑒 + arg𝐻 (𝜔 =𝜔𝑒) = 𝜑𝑒 + Δ𝜑 (𝜔 =𝜔𝑒)

𝑆 = 𝐻 (𝜔 =𝜔𝑒) 𝐸 donc
{
𝑆m =

��𝐻 (𝜔 =𝜔𝑒)
��𝐸m

𝜑𝑠 = 𝜑𝑒 + arg𝐻 (𝜔 =𝜔𝑒) = 𝜑𝑒 + Δ𝜑 (𝜔 =𝜔𝑒)

toto Espace 10

R
Le signal de sortie d’un filtre linéaire pour un signal d’entrée 𝑒 (𝑡) = 𝐸m cos(𝜔𝑒𝑡 + 𝜑𝑒) s’écrit

𝑠 (𝑡) =
��𝐻 (𝜔 =𝜔𝑒)

��𝐸m cos
(
𝜔𝑒𝑡 + 𝜑𝑒 + arg𝐻 (𝜔 =𝜔𝑒)

)
Le cas échéant, |𝐻 | et arg𝐻 peuvent se déduire du diagramme de Bode :��𝐻 (𝜔)�� = 10𝐺dB (𝜔 )/20 .

16/23 © Étienne Thibierge, www.etienne-thibierge.fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
www.etienne-thibierge.fr


Cours E5 : Filtrage Lycée Corneille, MPSI 2

• Signal d’entrée quelconque
Supposons maintenant le signal d’entrée 𝑒 (𝑡) quelconque, et écrivons-le sous forme d’un développement en

série de Fourier :

𝑒 (𝑡) = 𝐸0 +
+∞∑︁
𝑛=1

𝐸𝑛 cos(𝑛𝜔𝑡 + 𝜑𝑛) .

Le filtre étant linéaire, d’après le principe de superposition, le signal de sortie 𝑠 est la somme des sorties associées
à chaque harmonique du signal d’entrée :

Q
𝑠 (𝑡) =

��𝐻 (0)��𝐸0 + +∞∑︁
𝑛=1

��𝐻 (𝑛𝜔)��𝐸𝑛 cos (
𝑛𝜔𝑡 + 𝜑𝑛 + arg𝐻 (𝑛𝜔)

)
.

� � �Attention ! Le module et l’argument de𝐻 sont à calculer pour chaque harmonique, avec sa propre pulsation.
Il ne suffit pas de considérer une seule valeur à la pulsation du signal.

Remarque : Le résultat ci-dessus montre que le spectre des signaux d’entrée et de sortie d’un système
linéaire contiennent exactement les mêmes harmoniques. Ce résultat peut être utilisé expérimentalement
pour prouver la nature linéaire d’un système « inconnu ».

• Mise en pratique

M
Application 6 : Construction du signal de sortie d’un filtre

Considérons le filtre dont le diagramme de Bode est donné ci-dessous. On envoie en entrée du filtre le signal

𝑒 (𝑡) = 𝐸0 cos
( 𝜔0
100𝑡 −

𝜋

6

)
+ 𝐸0 cos

(
𝜔0𝑡 + 𝜋

4

)
+ 𝐸0 cos (50𝜔0𝑡) .

Exprimer le signal de sortie.

10−3 10−2 10−1 100 101 102

0

−10
−20
−30

𝑥 = 𝜔/𝜔0

𝐺
dB

(d
B)

10−3 10−2 10−1 100 101 102

0

𝑥 = 𝜔/𝜔0

Δ
𝜑
(ra

d)

−𝜋2

−𝜋4

IV.B - Point de vue temporel : comportement moyenneur, dérivateur, intégrateur
• Filtre moyenneur

R
Un filtre agit enmoyenneur si le signal de sortie

est proportionnel à la valeur moyenne du signal d’entrée,
𝑠 (𝑡) = 𝐻0 ⟨𝑒⟩ = cte .

Réalisation pratique : le filtre doit couper (= fortement atténuer) toutes les harmoniques, sauf la composante
continue{ utilisation d’un filtre passe-bas qui coupe toutes les harmoniques
le filtre doit couper (= fortement atténuer) toutes les harmoniques, sauf la composante continue{ utilisation d’un
filtre passe-bas qui coupe toutes les harmoniques
le filtre doit couper (= fortement atténuer) toutes les harmoniques, sauf la composante continue{ utilisation d’un
filtre passe-bas qui coupe toutes les harmoniques
toto Espace 11
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Un filtre passe-bas agit en moyenneur sur les signaux de fréquence 𝑓
très supérieure à sa fréquence de coupure.

• Filtre dérivateur

R
Un filtre agit en dérivateur si le signal de sortie
est proportionnel à la dérivée du signal d’entrée,

𝑠 (𝑡) = 𝜏
d𝑒
d𝑡 .

Le paramètre 𝜏 est appelé constante de temps du dérivateur.

Traduction graphique dans un diagramme de Bode : Fonction de transfert d’un filtre dérivateur idéal : 𝑆 =
j𝜔𝜏 𝐸, soit 𝐻 = j𝜔𝜏 .
On en déduit donc 𝐺dB = 20 log(𝜔𝜏) et Δ𝜑 = 𝜋/2
Fonction de transfert d’un filtre dérivateur idéal : 𝑆 = j𝜔𝜏 𝐸, soit 𝐻 = j𝜔𝜏 .
On en déduit donc 𝐺dB = 20 log(𝜔𝜏) et Δ𝜑 = 𝜋/2
Fonction de transfert d’un filtre dérivateur idéal : 𝑆 = j𝜔𝜏 𝐸, soit 𝐻 = j𝜔𝜏 .
On en déduit donc 𝐺dB = 20 log(𝜔𝜏) et Δ𝜑 = 𝜋/2
toto Espace 12

R
Si un filtre présente une pente de +20 dB/décade dans son diagramme de Bode en gain

et un déphasage constant de +𝜋/2
pour un certain domaine de fréquences, alors il agit en dérivateur sur ce domaine.

{ un dérivateur parfait à toute fréquence n’existe pas, car cela supposerait un gain infini, c’est-à-dire une
amplification infinie, en haute fréquence.

Réalisation pratique : Où a-t-on déjà rencontré pareille fonction de transfert ? Passe-haut du premier ordre dans
la limite des basses fréquences :

𝐻 =
j 𝜔
𝜔c

𝐻0

1 + j 𝜔
𝜔c

∼ j 𝜔
𝜔c

𝐻0

ce qui est bien de la forme voulue avec 𝜏 = 𝐻0/𝜔c.
Où a-t-on déjà rencontré pareille fonction de transfert ? Passe-haut du premier ordre dans la limite des basses
fréquences :

𝐻 =
j 𝜔
𝜔c

𝐻0

1 + j 𝜔
𝜔c

∼ j 𝜔
𝜔c

𝐻0

ce qui est bien de la forme voulue avec 𝜏 = 𝐻0/𝜔c.
Où a-t-on déjà rencontré pareille fonction de transfert ? Passe-haut du premier ordre dans la limite des basses
fréquences :

𝐻 =
j 𝜔
𝜔c

𝐻0

1 + j 𝜔
𝜔c

∼ j 𝜔
𝜔c

𝐻0

ce qui est bien de la forme voulue avec 𝜏 = 𝐻0/𝜔c.
toto Espace 13

R
Un filtre passe-haut du premier ordre agit en dérivateur sur les signaux de fréquence 𝑓

très inférieure à sa fréquence de coupure.
En plus d’être dérivé, le signal est fortement atténué.

� � � Attention ! Un passe-haut d’ordre 2 n’agit pas en dérivateur, même en basse fréquence.
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• Filtre intégrateur

R
Un filtre agit en intégrateur si le signal de sortie est proportionnel à l’intégrale du signal d’entrée,

𝑠 (𝑡) = 1
𝜏

ˆ 𝑡

0
𝑒 (𝑡)d𝑡 ⇐⇒ d𝑠

d𝑡 =
1
𝜏
𝑒

Le paramètre 𝜏 est appelé constante de temps de l’intégrateur.

Traduction graphique dans un diagramme de Bode : Fonction de transfert d’un filtre intégrateur idéal : 𝑆 =
1
j𝜔𝜏 𝐸, soit 𝐻 =

1
j𝜔𝜏 .

On en déduit donc 𝐺dB = −20 log(𝜔𝜏) et Δ𝜑 = −𝜋/2
Fonction de transfert d’un filtre intégrateur idéal : 𝑆 =

1
j𝜔𝜏 𝐸, soit 𝐻 =

1
j𝜔𝜏 .

On en déduit donc 𝐺dB = −20 log(𝜔𝜏) et Δ𝜑 = −𝜋/2
Fonction de transfert d’un filtre intégrateur idéal : 𝑆 =

1
j𝜔𝜏 𝐸, soit 𝐻 =

1
j𝜔𝜏 .

On en déduit donc 𝐺dB = −20 log(𝜔𝜏) et Δ𝜑 = −𝜋/2
toto Espace 14

R
Si un filtre présente une pente de –20 dB/décade dans son diagramme de Bode en gain

et un déphasage constant de −𝜋/2
pour un certain domaine de fréquences, alors il agit en intégrateur sur ce domaine.

{ un intégrateur parfait à toute fréquence n’existe pas, car cela supposerait un gain infini, c’est-à-dire une
amplification infinie, en basse fréquence.

Réalisation pratique : Où a-t-on déjà rencontré pareille fonction de transfert ? Passe-bas du premier ordre dans
la limite des hautes fréquences :

𝐻 =
𝐻0

1 + j 𝜔
𝜔c

∼ 𝐻0

j 𝜔
𝜔c

ce qui est bien de la forme voulue avec 𝜏 = 1/𝐻0𝜔c.
Où a-t-on déjà rencontré pareille fonction de transfert ? Passe-bas du premier ordre dans la limite des hautes fré-
quences :

𝐻 =
𝐻0

1 + j 𝜔
𝜔c

∼ 𝐻0

j 𝜔
𝜔c

ce qui est bien de la forme voulue avec 𝜏 = 1/𝐻0𝜔c.
Où a-t-on déjà rencontré pareille fonction de transfert ? Passe-bas du premier ordre dans la limite des hautes fré-
quences :

𝐻 =
𝐻0

1 + j 𝜔
𝜔c

∼ 𝐻0

j 𝜔
𝜔c

ce qui est bien de la forme voulue avec 𝜏 = 1/𝐻0𝜔c.
toto Espace 15

R
Un filtre passe-bas du premier ordre agit en intégrateur sur les signaux de fréquence 𝑓

très supérieure à sa fréquence de coupure.
En plus d’être intégré, le signal est fortement atténué.

� � � Attention ! Un passe-bas d’ordre 2 n’agit pas en dérivateur, même en basse fréquence.
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Application 7 : Traitement d’un signal créneau

On envoie en entrée d’un filtre passe-bas du premier ordre de fréquence de coupure 20Hz le signal créneau
représenté ci-dessous, de fréquence 1 kHz. Représenter qualitativement l’allure du signal de sortie.

𝑡

signaux

V - Association de filtres
V.A - Influence de la charge sur le fonctionnement d’un filtre

On appelle charge d’un filtre la portion de circuit à laquelle est imposée la tension de sortie.
Elle est décrite par son impédance de charge 𝑍c.

• Cas d’une charge résistive

M
Application 8 : Filtre sur une charge résistive

𝑅
𝐶 𝑅c𝐸 𝑆

Considérons un filtre RC passe-bas du premier ordre branché sur une charge
purement résistive 𝑅c.
1 - Pourquoi l’expression de la fonction de transfert établie précédemment 𝐻 =
1/(1 + j𝑅𝐶𝜔) n’est-elle plus valable?

2 - Établir l’expression de la fonction de transfert 𝐻 ′ tenant compte de la présence de la charge. La charge
résistive modifie-t-elle la nature du filtre? sa pulsation de coupure? son gain statique?
3 - Comment est-il souhaitable de choisir la charge pour qu’elle n’affecte pas le comportement du filtre?

Généralisation : .

Q
Les expressions des fonctions de transfert sont généralement établies en sortie ouverte,

et ne sont plus valables lorsque le filtre est connecté à une charge.
Pour que la charge n’affecte pas le fonctionnement du filtre,
le module de son impédance doit être le plus élevé possible.

• Lorsque la charge est un second filtre

M
Application 9 : Passe-bas + passe-haut = passe-bande ?

𝑅
𝐶 𝐶 𝑅𝐸 𝑆

On souhaite réaliser un filtre passe-bande par association d’un filtre RC
passe-bas et d’un filtre RC passe-haut. Établir la fonction de transfert de
l’ensemble. Est-elle égale au produit des fonctions de transfert en sortie ou-
verte des deux filtres associés ?
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Généralisation : .

R
La fonction de transfert d’un filtre composé d’une association de deux filtres

n’est en général pas égale au produit des fonctions de transfert en sortie ouverte de chacun des filtres.

Remarque : en revanche, le résultat est vrai si l’on considère la fonction de transfert du premier filtre
chargé par le deuxième ... mais le calcul n’est quasiment jamais posé de la sorte, puisqu’il est alors
beaucoup plus efficace de déterminer directement la fonction de transfert de l’ensemble.

V.B - Impédances d’entrée et de sortie
• Définition

Rquadripôle
𝐼e

𝑍e𝐸

𝑆0

𝑍s
𝐼s

𝑆

De façon très générale, un quadripôle linéaire peut se modéliser
par le schéma équivalent ci-contre.

⊲ 𝑍e est appelée impédance d’entrée ;
⊲ 𝑍s est appelée impédance de sortie ;
⊲ la tension de sortie ouverte 𝑆0 est reliée à la tension d’entrée
par la fonction de transfert en sortie ouverte : 𝑆0 = 𝐻 𝐸.

{ lorsque 𝐼s ≠ 0, alors 𝑆 = 𝑆0 − 𝑍s 𝐼s ≠ 𝐻0 𝐸.

Remarque :Même si cela ne se voit pas sur le schéma, l’impédance d’entrée du quadripôle peut dépendre
de la charge connectée en sortie.

➽ Pour approfondir : pour mieux comprendre ces notions, illustrons-les sur l’exemple du filtre RC en calculant son
impédance d’entrée et de sortie.

𝑅𝐼e

𝐶

𝐼s

𝐸 𝑆

⊲ Impédance d’entrée en sortie ouverte. Supposons 𝐼s = 0, c’est-à-dire que les dipôles
𝑅 et 𝐶 sont tous les deux traversés par le courant d’entrée 𝐼e. Par la loi des mailles et la
définition de l’impédance complexe,

𝐸 =

(
𝑅 + 1

j𝐶𝜔

)
𝐼e d’où 𝑍e = 𝑅 + 1

j𝐶𝜔 ,

puisque 𝑍e = 𝐸/𝐼e d’après le schéma équivalent ci-dessus.

⊲ Impédance de sortie. Supposons maintenant 𝐼s ≠ 0. D’après la loi des nœuds,

𝐼s =
𝐸 − 𝑆
𝑅
− j𝐶𝜔 𝑆 =

𝐸 − (1 + j𝑅𝐶𝜔 𝑆)
𝑅

.

Or par définition 𝐸 et 𝑆0 sont reliés par la fonction de transfert en sortie ouverte du filtre,

𝐻 =
𝑆0

𝐸
=

1
1 + j𝑅𝐶𝜔 soit 𝐸 = (1 + j𝑅𝐶𝜔)𝑆0

En substituant dans l’expression du courant de sortie,

𝐼s =
1 + j𝑅𝐶𝜔

𝑅

(
𝑆0 − 𝑆

)
et en identifiant avec le schéma de définition où la loi des mailles impose 𝑆 = 𝑆0 − 𝑍s 𝐼s, on en déduit

𝑍s =
𝑅

1 + j𝑅𝐶𝜔 .

On constate que l’impédance de sortie n’est pas égale à l’impédance d’entrée ... ce qui ne devrait pas nous surprendre,
puisque rien ne l’oblige. ■
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• Fonction de transfert d’une association de quadripôles

filtre 1 filtre 2

𝑍e1𝐸

𝑆01

𝑍s1

𝐼s1 = 𝐼e2

𝑍e2

𝑆02

𝑍s2

𝐼s = 0

𝐸2 𝑆

Figure 4 – Association en cascade de deux quadripôles.

Fonction de transfert en sortie ouverte de l’association des deux quadripôles :
Le filtre 2 est en sortie ouverte, donc

𝐻 =
𝑆

𝐸
=
𝑆02

𝐸
=
𝐻2 𝐸2

𝐸
.

Or par un pont diviseur de tension

𝐸2 =
𝑍e2

𝑍s1 + 𝑍e2
𝑆01 =

𝑍e2

𝑍s1 + 𝑍e2
𝐻1 𝐸

d’où on déduit
𝐻 =

𝑍e2

𝑍s1 + 𝑍e2
𝐻1𝐻2 =

1

1 +
𝑍s1

𝑍e2

𝐻1𝐻2 .

On peut approximer 𝐻 = 𝐻1 × 𝐻2 si |𝑍s1 | ≪ |𝑍e2 |.
Le filtre 2 est en sortie ouverte, donc

𝐻 =
𝑆

𝐸
=
𝑆02

𝐸
=
𝐻2 𝐸2

𝐸
.

Or par un pont diviseur de tension

𝐸2 =
𝑍e2

𝑍s1 + 𝑍e2
𝑆01 =

𝑍e2

𝑍s1 + 𝑍e2
𝐻1 𝐸

d’où on déduit
𝐻 =

𝑍e2

𝑍s1 + 𝑍e2
𝐻1𝐻2 =

1

1 +
𝑍s1

𝑍e2

𝐻1𝐻2 .

On peut approximer 𝐻 = 𝐻1 × 𝐻2 si |𝑍s1 | ≪ |𝑍e2 |.
Le filtre 2 est en sortie ouverte, donc

𝐻 =
𝑆

𝐸
=
𝑆02

𝐸
=
𝐻2 𝐸2

𝐸
.

Or par un pont diviseur de tension

𝐸2 =
𝑍e2

𝑍s1 + 𝑍e2
𝑆01 =

𝑍e2

𝑍s1 + 𝑍e2
𝐻1 𝐸

d’où on déduit
𝐻 =

𝑍e2

𝑍s1 + 𝑍e2
𝐻1𝐻2 =

1

1 +
𝑍s1

𝑍e2

𝐻1𝐻2 .

On peut approximer 𝐻 = 𝐻1 × 𝐻2 si |𝑍s1 | ≪ |𝑍e2 |.
toto Espace 16

R
Pour faciliter leur mise en cascade, on cherche à réaliser des quadripôles

de grande impédance d’entrée (à la limite infinie) et de faible impédance de sortie (à la limite nulle).
Lorsque deux blocs qui s’enchaînent vérifient |𝑍s1 | ≪ |𝑍e2 |,

la fonction de transfert de l’association est égale au produit des fonctions de transfert des deux blocs.
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Correction des applications de cours
Application 8 : Filtre sur une charge résistive

1 𝑅 et 𝐶 ne forment plus un pont diviseur.

2 Méthode classique :

𝐻 =
1

1 + 𝑅𝑌𝑅𝐶 =
1

1 + 𝑅

𝑅c
+ j𝑅𝐶𝜔

=

𝑅c
𝑅 + 𝑅c

1 + j 𝑅c𝑅

𝑅 + 𝑅c𝐶𝜔

Le filtre reste un passe-bas du premier ordre, mais le gain statique et la pulsation de coupure sont modifiées.

3 Il faut avoir 𝑅/𝑅c ≪ 1.

Application 9 : Filtres RC en cascade
On trouve𝐻 =

j𝑅𝐶𝜔
1 − 𝑅𝐶𝜔2 + 3j𝑅𝐶𝜔 : le facteur de qualité vaut 1/3 alors qu’il vaudrait 1/2 si on pouvait multiplier

les fonctions de transfert en sortie ouverte.
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