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orrection

Électronique – TD 5 Lycée Corneille, MPSI 2

Filtrage

Se préparer

Exercice 1 : Passe bas du second ordre 1 | 2 |

⊲ Fonction de transfert ;
⊲ Tracé de diagramme de Bode.

Correction des questions d’analyse du corrigé
Question d’analyse 1 - La tension aux bornes d’un interrupteur ouvert est indéterminée, c’est-à-dire qu’elle peut
effectivement être nulle ... ou pas !
Question d’analyse 2 - Pour appliquer un pont diviseur, les dipôles doivent être montés en série, c’est-à-dire parcourus
par le même courant. Or ici 𝐿 et 𝐶 ne sont pas montés en série (ni en parallèle, d’ailleurs) à cause de la résistance. En
revanche, l’association de 𝑅 et 𝐶 (leur impédance équivalente) est bien montée en série avec la bobine.
Question d’analyse 3 - Par définition, 𝑌𝑅𝐶 = 1/𝑍𝑅𝐶 donc 𝑌𝑅𝐶 × 𝑍𝑅𝐶 = 1. La deuxième expression est obtenue en
multipliant le numérateur et le dénominateur de la première par 𝑌𝑅𝐶 .
Question d’analyse 4 - Les équivalents ne conservent qu’un seul terme, le terme dominant : en l’occurence, j𝑥/𝑄 est
divergent mais −𝑥2 l’est aussi, et diverge plus rapidement. C’est donc −𝑥2 le terme dominant.
Question d’analyse 5 - Le module intervient dans la définition du gain, ce qui enlève les signes : 𝐺dB = 20 log

��𝐻 ��.
L’autre signe apparaît ensuite à cause du log de l’inverse.
Question d’analyse 6 - Un phénomène de résonance peut exister dans les sytèmes d’ordre 2, auquel cas le diagramme
de Bode réel diffère significativement du diagramme asymptotique.
Question d’analyse 7 - On utilise l’égalité 1/j = −j, qui vient du fait que j2 = −1.
Question d’analyse 8 - Deux façons de faire : on place le point le plus facile, celui en 𝑥 = 100 = 1, en faisant bien
attention à utiliser l’équation de l’asymptote et pas la valeur réelle (c’est l’asymptote que l’on trace ! !), puis on utilise la
pente de −40 dB/décade pour prolonger la droite. Sinon, on peut aussi utiliser l’équation de l’asymptote pour trouver
un deuxième point.

Analyse spectrale

Exercice 2 : Signal triangulaire 1 | 2

⊲ Valeur moyenne et valeur efficace ;
⊲ Développement de Fourier.

1 Le signal est affine par morceaux, nul en ±𝑇 /2 : en notant𝑈max = 2V sa valeur maximale et𝑇 = 1ms sa période,

𝑢 (𝑡) =


(
1 − 2𝑡

𝑇

)
𝑈max pour 𝑡 ≥ 0(

1 + 2𝑡
𝑇

)
𝑈max pour 𝑡 ≤ 0

1/22 © Étienne Thibierge, www.etienne-thibierge.fr

http://creativecommons.org/licenses/by-nc-sa/4.0/
www.etienne-thibierge.fr


Correction TD E5 : Filtrage Lycée Corneille, MPSI 2

2 Graphiquement, il est clair que ⟨𝑢⟩ =𝑈max/2, ce que l’on peut vérifier par le calcul direct.

3 Par parité, il suffit de calculer l’intégrale pour 𝑡 > 0,

〈
𝑢 (𝑡)2

〉
=

2
𝑇

ˆ 𝑇 /2

0

(
1 − 2𝑡

𝑇

)2
𝑈 2
max d𝑡

=
2𝑈 2

max
𝑇

[
4𝑡3
3𝑇 2 − 2𝑡2

𝑇
+ 𝑡

]𝑇 /2
0

=
2𝑈 2

max
𝑇

× 𝑇

6〈
𝑢 (𝑡)2

〉
=
𝑈 2
max
3

𝑈eff =
𝑈max√

3

4 D’après le théorème de Parseval, et puisque𝑈cc =𝑈max,〈
𝑢2
〉
= ⟨𝑢⟩2 +

∑︁
𝑛 impair

(
4𝑈max
𝑛2𝜋2

)2 〈
cos2(𝑛𝜔𝑡)

〉
ce qui donne

𝑈 2
max
3 =

𝑈 2
max
4 +

∑︁
𝑛 impair

(
4𝑈max
𝑛2𝜋2

)2
× 1
2∑︁

𝑛 impair

1
𝑛4

=
𝜋4

8 ×
(
1
3 − 1

4

)
∑︁

𝑛 impair

1
𝑛4

=
𝜋4

96 .

Ce résultat n’a aucun intérêt physique, pas sûr non plus qu’il ait un intérêt mathématique ... mais il s’agit d’une
illustration de ce que l’on peut faire en maths avec des développements en série de Fourier.

Exercice 3 : Filtrage d’un signal oral banque PT | 2 | 1 |

⊲ Décomposition de Fourier ;
⊲ Signal de sortie d’un filtre.

1 Voir figure 1. On superpose visuellement chaque courbe : à une constante se superpose un sinus lent de grande
amplitude, auquel se superpose un sinus rapide de faible amplitude.

2 En posant 𝑓 = 1 kHz et 𝐴 = 1V, le signal d’entrée s’écrit

𝑒 (𝑡) = 𝐴 + 3𝐴 cos(2𝜋 𝑓 𝑡) + 𝐴

10 cos
(
40𝜋 𝑓 𝑡 + 𝜋

2

)
.

3 Voir figure 2. Un filtre idéal transmet (resp. coupe) parfaitement les composantes qui appartiennent (resp. qui
n’appartiennent pas) à sa bande passante, et de gain unité dans leur bande passante.
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Figure 1 – Signal d’entrée.

Exercice 4 : Lecture de diagrammes de Bode 1 | 1 |

⊲ Lecture de diagrammes de Bode ;
⊲ Reconstruction du signal de sortie d’un filtre.

Rappel de cours : Pour un signal d’entrée

𝑒 (𝑡) =
∑︁
𝑛

𝐸𝑛 cos(𝑛𝜔𝑡 + 𝜑𝑛)

le signal de sortie du filtre s’écrit

𝑠 (𝑡) =
∑︁
𝑛

��𝐻 (𝑛𝜔)
��𝐸𝑛 cos (𝑛𝜔𝑡 + 𝜑𝑛 + arg𝐻 (𝑛𝜔)

)
où

��𝐻 (𝑛𝜔)
�� = 10𝐺dB (𝑛𝜔 )/20 et arg𝐻 (𝑛𝜔) = 𝜑 (𝜔𝑛).

Pour faciliter la rédaction on note 𝑒 (𝑡) = 𝑒0+𝑒1(𝑡) +𝑒10(𝑡) +𝑒100(𝑡) et de même pour le signal de sortie 𝑠 . Ainsi,
par linéarité, chaque composante 𝑒𝑛 du signal d’entrée donne une composante 𝑠𝑛 au signal de sortie.

• Premier filtre :

D’après l’allure du diagramme de Bode, il s’agit d’un filtre passe-haut, de fréquence caractéristique 𝒇0 de
l’ordre de 10kHz. Son asymptote TBF a pour pente 40 dB/décade, il s’agit donc d’un filtre d’ordre 2.

Reconstruisons le signal de sortie :
⊲ Le terme constant 𝑒0 est complètement coupé par le filtre, 𝑠0 = 0.
⊲ L’harmonique de fréquence 𝑓 est atténuée de 40 dB et peut donc être négligée dans le signal de sortie (40 dB
correspond à une division par 100), soit 𝑠1(𝑡) ≃ 0.

⊲ L’harmonique de fréquence 10𝑓 est atténuée de 10 dB, ce qui correspond à un gain en amplitude de 10−𝐺dB/20 =
10−1/2 ≃ 0,3, et elle est également déphasée de +𝜋/2, donc

𝑠10(𝑡) = 0,3𝐸0 cos
(
10𝜔𝑡 + 𝜋

4 + 𝜋

2

)
= 0,3𝐸0 cos

(
10𝜔𝑡 + 3𝜋

4

)
⊲ l’harmonique de fréquence 100𝑓 n’est presque pas atténuée ni déphasée, donc

𝑠100(𝑡) ≃ 𝑒100(𝑡) = 𝐸0 cos
(
100𝜔𝑡 − 𝜋

3

)
Finalement,

𝑠 (𝑡) = 0,3𝐸0 cos
(
10𝜔𝑡 + 3𝜋

4

)
+ 𝐸0 cos

(
100𝜔𝑡 − 𝜋

3

)
• Deuxième filtre :
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Figure 2 – Signaux de sortie des différents filtres.
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D’après l’allure du diagramme de Bode, il s’agit d’un filtre passe-haut, de fréquence caractéristique 𝒇0 de
l’ordre de 0,1 kHz. Son asymptote TBF a pour pente 40 dB/décade, il s’agit donc d’un filtre d’ordre 2, ce qui est
confirmé par la présence de la résonance.

Pour reconstruire le signal de sortie, il suffit de remarquer que la fréquence 𝑓 est d’une décade supérieure à la
fréquence propre du filtre. Un signal harmonique de cette fréquence n’est presque pas atténué ni déphasé par le
filtre, et c’est encore plus vrai pour les signaux de fréquence 10 𝑓 et 100 𝑓 . En revanche, le terme constant est coupé
par le filtre. Ainsi,

𝑠 (𝑡) = 𝐸0 cos(𝜔𝑡) + 𝐸0 cos
(
10𝜔𝑡 + 𝜋

4

)
+ 𝐸0 cos

(
100𝜔𝑡 − 𝜋

3

)
• Troisième filtre :

Ce filtre laisse passer les basses et les hautes fréquences, mais coupe une bande de fréquence intermédiaire :
il s’agit d’un filtre coupe-bande dont la fréquence coupée vaut 1 kHz. Vous n’avez pas à savoir identifier l’ordre
d’un tel filtre : pour information, il s’agit d’un ordre 2.

La composante 𝑒1 est exactement de la fréquence coupée : elle ne contribue donc pas du tout au signal de sortie,
c’est-à-dire 𝑠1 = 0. Les autres composantes harmoniques du signal d’entrée, y compris la composante continue, sont
de fréquence suffisamment différente de la fréquence coupée pour n’être ni atténuée ni déphasée. La signal de sortie
s’écrit donc sous la forme

𝑠 (𝑡) = 𝐸0 + 𝐸0 cos
(
10𝜔𝑡 + 𝜋

4

)
+ 𝐸0 cos

(
100𝜔𝑡 − 𝜋

3

)
• Quatrième filtre :

Le diagramme de Bode est celui d’un filtre passe-bas de fréquence de coupure 𝒇c = 100Hz. L’asymptote
très haute fréquence a une pente de −20 dB/décade, le filtre est donc du premier ordre.

Le terme constante 𝑒0 passe au travers du filtre sans être modifié. Les termes suivants sont de fréquence suf-
fisamment supérieure à la fréquence de coupure pour que le diagramme de Bode puisse être approximé par son
asymptote. On peut alors déterminer le signal de sortie comme dans le cas du premier filtre, mais il y a plus simple :
comme le filtre est d’ordre 1, alors il se comporte comme un intégrateur pour les signaux de fréquence supérieure
à sa fréquence de coupure. En déduire le signal de sortie est donc très simple,

𝑠 (𝑡) = 𝐸0 +
𝜔c
𝜔
𝐸0 sin(𝜔𝑡) +

𝜔c
10𝜔 𝐸0 sin

(
10𝜔𝑡 + 𝜋

4

)
+ 𝜔c
100𝜔 𝐸0 sin

(
100𝜔𝑡 − 𝜋

3

)
Attention à ne pas oublier la pulsation de coupure en préfacteur ... sans quoi les expressions ne sont pas
homogènes.

En écrivant le signal en termes de cosinus, on obtient

𝑠 (𝑡) = 𝐸0 +
𝜔c
𝜔
𝐸0 cos

(
𝜔𝑡 − 𝜋

2

)
+ 𝜔c
10𝜔 𝐸0 cos

(
10𝜔𝑡 + 𝜋

4 − 𝜋

2

)
+ 𝜔c
100𝜔 𝐸0 cos

(
100𝜔𝑡 − 𝜋

3 − 𝜋

2

)
d’où finalement

𝑠 (𝑡) = 𝐸0 +
𝜔c
𝜔
𝐸0 cos

(
𝜔𝑡 − 𝜋

2

)
+ 𝜔c
10𝜔 𝐸0 cos

(
10𝜔𝑡 − 𝜋

4

)
+ 𝜔c
100𝜔 𝐸0 cos

(
100𝜔𝑡 − 5𝜋

6

)
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Exercice 5 : Signal de sortie d’un filtre adapté oral banque PT | 3 | 2

⊲ Développement de Fourier ;
⊲ Lecture d’un diagramme de Bode ;
⊲ Reconstruction du signal de sortie d’un filtre.

� � � Attention ! Les deux voies de l’oscilloscope ne sont pas représentées à la même échelle !

1 Le signal créneau a une amplitude de 2,5V, une période de 1ms soit une fréquence de 1kHz et une
valeur moyenne nulle. On constate sur le chronogramme que le signal créneau est impair, 𝑣e(−𝑡) = −𝑣e(𝑡), soit
en termes de développement de Fourier

−
∞∑︁
𝑘=1

𝐴𝑘 sin(2𝜋𝑘 𝑓 𝑡) +
∞∑︁
𝑘=1

𝐵𝑘 cos(2𝜋𝑘 𝑓 𝑡) = −
∞∑︁
𝑘=1

𝐴𝑘 sin(2𝜋𝑘 𝑓 𝑡) −
∞∑︁
𝑘=1

𝐵𝑘 cos(2𝜋𝑘 𝑓 𝑡)

soit à tout instant

2
∞∑︁
𝑘=1

𝐵𝑘 cos(2𝜋𝑘 𝑓 𝑡) = 0

ce qui ne peut être vérifié que si
∀𝑘, 𝐵𝑘 = 0 .

En termes mathématiques, on utilise le fait que les fonctions sinusoïdales constituent une famille libre.
Physiquement, un signal est constamment nul si et seulement si toutes les harmoniques de ce signal sont
d’amplitude nulles.

2 Le diagramme de Bode du filtre est celui d’un filtre passe-bande dont la fréquence centrale est 𝑓0 = 3 kHz.

3 Si on modélise le signal de sortie par une unique sinusoïde, on lit graphiquement que celle-ci aurait une période
égale à un tiers de la période du créneau, soit une fréquence 3𝒇 = 3 kHz, et une amplitude que l’on peut estimer
égale à 1V, en tenant compte de l’échelle différente. Cette sinusoïde correspond à l’harmonique de rang 𝑘 = 3 du
signal d’entrée.

4 Les deux harmoniques « candidates » sont celles dont la fréquence est la plus proche de la fréquence centrale du
filtre, car ce seront les moins atténuées par le filtre : les deux harmoniques envisageables sont donc le fondamental
𝑘 = 1 et l’harmonique de rang 𝑘 = 5.

5 On constate graphiquement que la « sinusoïde » envisagée précédemment a une amplitude qui varie à la même
fréquence que le créneau. La deuxième harmonique à considérer serait donc le fondamental 𝑘 = 1 du créneau.
Retrouvons ce résultat à partir du diagramme de Bode.
⊲ pour le fondamental 𝑘 = 1 : 𝑓 = 1 kHz donc 𝐺dB = −22 dB, si bien que dans le signal de sortie l’harmonique a
une amplitude

𝐴1,s =
��𝐻 (1 kHz)

��𝐴1,e = 10−22/20 4𝐴
𝜋

.

⊲ pour l’harmonique 𝑘 = 5 : 𝑓 = 5 kHz, donc𝐺dB = −15 dB, si bien que dans le signal de sortie l’harmonique a une
amplitude

𝐴5,s =
��𝐻 (1 kHz)

��𝐴5,e = 10−15/20 4𝐴5𝜋 .

Finalement, le rapport des amplitudes de ces deux harmoniques vaut

𝐴1,s
𝐴5,s

=
10−22/20

10−15/20
× 5 = 2,2 ,

ce qui confirme que le fondamental joue un rôle plus important dans le signal de sortie que l’harmonique 𝑘 = 5.

6 L’amplitude de toutes les harmoniques de rang 𝑘 ≥ 7 est inférieure à celle de rang 5 dans le signal d’entrée, et
on constate sur le diagramme de Bode qu’elles sont encore plus atténuées par le filtre que l’harmonique de rang 5.
Comme l’harmonique de rang 5 est déjà négligée, celles de rang 𝑘 ≥ 7 le sont forcément aussi.

7 On calcule d’abord les valeurs des amplitudes ... puis on trace !
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Harmonique Fréquence Amplitude en entrée Amplitude en sortie
𝑘 𝑓𝑘 (kHz) 4𝐴/𝑘𝜋 (V) 10𝐺dB (𝑓𝑘 )/20 × 4𝐴/𝑘𝜋 (V)
1 1 3,2 0,24
3 3 1,1 2,2
5 5 0,64 0,12
7 7 0,45 0,05

On remarque que le caractère négligeable des harmoniques 5 et 7 s’avère finalement assez discutable !

Étude de filtres

Exercice 6 : Filtre passe-haut d’ordre 2 1 | 1 |

⊲ Fonction de transfert ;
⊲ Tracé d’un diagramme de Bode.

1 Analysons qualitativement les régimes asymptotiques.
⊲ à très basse fréquence, la bobine est équivalente à un fil donc 𝑆 = 0 ;
⊲ à très haute fréquence la bobine est équivalente à un interrupteur ouvert, ce qui empêche tout courant de par-
courir le circuit. Comme par le condensateur est équivalent à un fil, on déduit de la loi des mailles 𝑆 = 𝐸.

Conclusion : il s’agit bien d’un filtre passe-haut.

2 D’après la relation du pont diviseur de tension,

𝐻 =
𝑆

𝐸
=

j𝐿𝜔

𝑅 + 1
j𝐶𝜔 + j𝐿𝜔

=

j𝐿
𝑅
𝜔

1 + 1
j𝑅𝐶𝜔 + j𝐿

𝑅
𝜔

Pour faire apparaître la forme souhaitée, on multiplie le numérateur et le dénominateur par 1 = 𝜔0/𝜔0, ce qui
permet d’écrire

𝐻 =

j𝐿𝜔0
𝑅

𝑥

1 + 1
j𝑅𝐶𝜔0𝑥

+ j𝐿𝜔0
𝑅

𝑥

Comme pour ce circuit RLC série 𝑄 = 1
𝑅

√︃
𝐿
𝐶
et 𝜔0 = 1/

√
𝐿𝐶 , on en identifie

𝐿𝜔0
𝑅

=
𝐿

𝑅
√
𝐿𝐶

=𝑄 et 𝑅𝐶𝜔0 =
𝑅𝐶
√
𝐿𝐶

= 𝑅

√︂
𝐶

𝐿
=

1
𝑄

.

ce qui permet enfin de faire apparaître la forme souhaitée,

𝐻 =
j𝑄𝑥

1 + j𝑄
(
𝑥 − 1

𝑥

)
3 Simplifions la fonction de transfert dans les deux limites asymptotiques. À très basse fréquence (𝜔 ≪ 𝜔0 ou
𝑥 ≪ 1),

𝐻 ∼ j𝑄𝑥
−j𝑄/𝑥 ∼ −𝑥2 donc 𝐺dB ∼ 20 log𝑥2 = 40 log𝑥

La pente de l’asymptote très basse fréquence est donc de +40 dB/décade. De même, dans la limite très haute fré-
quence 𝑥 ≫ 1,

𝐻 ∼ j𝑄𝑥
j𝑄𝑥 ∼ 1 donc 𝐺dB ∼ 0
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𝐺
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10−2 10−1 100 101 102
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−1
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𝑥

𝜑
(ra

d)

Figure 3 – Diagramme de Bode du filtre RLC passe-haut d’ordre 2. Tracé pour 𝑄 = 1/2, diagramme de Bode en
phase ajouté pour information.

L’asymptote très haute fréquence est donc horizontale. Le diagramme de Bode asymptotique et le diagramme de
Bode réel (tracé pour 𝑄 = 1/2 < 1/

√
2) sont représentés figure 3.

4 Le comportement intégrateur ou dérivateur d’un filtre se traduit en termes de diagramme de Bode par une
asymptote de pente ±20 dB/décade, ce qui n’est pas le cas ici : il n’existe aucun domaine de fréquence dans
lequel ce filtre a un comportement d’intégrateur ou de dérivateur.

Exercice 7 : Filtre RL 1 | 1 |

⊲ Fonction de transfert ;
⊲ Tracé d’un diagramme de Bode ;
⊲ Reconstruction du signal de sortie d’un filtre.

1 Analyse asymptotique par équivalence :
⊲ à très basse fréquence, la bobine est équivalente à un fil, donc 𝑆 = 0 ;
⊲ à très haute fréquence, la bobine est équivalente à un interrupteur ouvert, donc le courant dans le filtre est
nul et on déduit de la loi des mailles 𝑠 = 𝑒 .

Conclusion : le filtre est a priori un filtre passe-haut.

2 Utilisons un pont diviseur de tension en représentation complexe,

𝐻 =
𝑆

𝐸
=

j𝐿𝜔
𝑅 + j𝐿𝜔 =

j𝐿
𝑅
𝜔

1 + j𝐿
𝑅
𝜔

soit 𝐻 = 𝐻0
j 𝜔
𝜔c

1 + 𝑗 𝜔
𝜔c

avec
{
𝐻0 = 1
𝜔c = 𝑅/𝐿

3 Simplifions la fonction de transfert dans la limite très basse fréquence 𝜔 ≪ 𝜔c,

𝐻 ∼
j 𝜔
𝜔c

1 ∼ j𝜔
𝜔c

donc 𝐺dB(𝜔) = 20 log
��𝐻 �� = 20 log𝑥

Ainsi, la pente de l’asymptote à basse fréquence est de pente +20 dB/décade et elle passe par le point 𝐺dB = 0
en 𝑥 = 1.

De même dans la limite très haute fréquence 𝜔 ≫ 𝜔c,

𝐻 ∼
j 𝜔
𝜔c

j 𝜔
𝜔c

= 1 . d’où 𝐺dB(𝜔) = 20 log 1 = 0 .

L’asymptote haute fréquence est donc une asymptote horizontale. On en déduit l’allure du diagramme de Bode
représenté figure 4.
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10−2 10−1 100 101 102

0
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𝑥 = 𝜔/𝜔c

𝐺
dB

(d
B)

Figure 4 – Diagramme de Bode du filtre RL.

4 Comme les trois harmoniques sont de même amplitude, et choisissant nulle leur phase commune,

𝑒 (𝑡) = 𝐸0 cos(2𝜋 𝑓1𝑡) + 𝐸0 cos(2𝜋 𝑓2𝑡) + 𝐸0 cos(2𝜋 𝑓3𝑡) .

D’après les valeurs numériques données, la pulsation de coupure du filtre vaut

𝜔c =
𝑅

𝐿
= 1,0 · 105 rad · s−1 soit 𝑓c =

𝜔c
2𝜋 = 16 kHz .

Rappel de cours : Pour un signal d’entrée

𝑒 (𝑡) =
∑︁
𝑛

𝐸𝑛 cos(𝜔𝑛𝑡 + 𝜑𝑛)

le signal de sortie du filtre s’écrit

𝑠 (𝑡) =
∑︁
𝑛

��𝐻 (𝜔𝑛)
��𝐸𝑛 cos (𝜔𝑛𝑡 + 𝜑𝑛 + arg𝐻 (𝜔𝑛)

)
où

��𝐻 (𝜔𝑛)
�� = 10𝐺dB (𝜔𝑛 )/20 et arg𝐻 (𝜔𝑛) = 𝜑 (𝜔𝑛).

⊲ La composante de pulsation réduite 𝑥1 = 𝑓1/𝑓c = 6 · 10−3 se trouve dans le domaine basse fréquence du filtre,
donc |𝐻 (𝑥1) | ≃ 𝑥1 = 6 · 10−3 ≪ 1 : on pourra donc négliger cette composante dans le signal de sortie, puisque
son amplitude est très inférieure aux autres.

⊲ La composante de pulsation réduite 𝑥2 = 𝑓2/𝑓c = 6 · 10−2 ne se trouve plus vraiment dans le domaine basse
fréquence, du moins pas pour la courbe de phase. On peut calculer numériquement |𝐻 (𝑥2) | = 1/16 et lire gra-
phiquement sur le diagramme de phase un déphasage Δ𝜑 (𝑥2) = 1,5 rad.

⊲ De même pour la composante de pulsation réduite 𝑥3, on calcule |𝐻 (𝑥3) | = 0,99 ≃ 1 et on lit graphique-
ment Δ𝜑 (𝑥1) = 0,2 rad.

En conclusion,

𝑠 (𝑡) = 𝐸0
16 cos (2𝜋 𝑓2𝑡 + 1,5) + 𝐸0 cos(2𝜋 𝑓3𝑡 + 0,2) .

5 La fréquence du signal est bien plus faible que la fréquence de coupure du filtre, qui est dans son domaine
asymptotique de fonction de transfert équivalente j𝜔/𝜔c. En repassant en représentation temporelle, cela indique
que le circuit se comporte en dérivateur,

𝑠 (𝑡) = 1
𝜔c

d𝑒
d𝑡 .

La pente d’un signal triangle étant constante, alternativement positive et négative, le signal dérivé présente des
plateaux alternativement positifs et négatifs, ce qui est bien un signal créneau de même fréquence que le signal
triangle. Étant dans la bande coupée du filtre, son amplitude sera très faible.
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Exercice 8 : Modélisation d’un récepteur radio oral banque PT | 2 | 1

⊲ Fonction de transfert ;
⊲ Bande passante.

1 Le récepteur doit réaliser un filtrage passe-bande. La tension de sortie doit donc être mesurée aux bornes
de la résistance, voir figure 5. En effet,
⊲ dans la limite très basse fréquence, le condensateur est équivalent à un interrupteur ouvert donc 𝐼 = 0 donc
d’après la loi d’Ohm 𝑆 = 0 ;

⊲ dans la limite très haute fréquence, c’est cette fois la bobine qui est équivalente à un interrupteur ouvert donc
on a de même 𝑆 = 0.

𝐶 𝐼 𝐿

𝑅𝐸 𝑆

Figure 5 – Modèle de récepteur radio.

Le condensateur et la bobine montés en série sont équivalents à une impédance

𝑍𝐿𝐶 = j𝐿𝜔 + 1
j𝐶𝜔 .

En identifiant un pont diviseur de tension,

𝐻 =
𝑆

𝐸
=

𝑅

𝑅 + 𝑍𝐿𝐶

=
1

1 +
𝑍𝐿𝐶

𝑅

soit en remplaçant

𝐻 =
1

1 + j𝐿𝜔
𝑅

+ 1
j𝑅𝐶𝜔

.

2 Un critère possible serait que la fréquence centrale 𝑓0 du passe-bande doit être incluse dans la bande de fréquence
que l’on cherche à capter. En utilisant les résultats connus sur le RLC série,

𝑓0 =
1

2𝜋
√
𝐿𝐶

,

et ainsi
𝑓0 > 𝑓1 = 150 kHz donc 2𝜋

√
𝐿𝐶 <

1
𝑓1

d’où 𝐶 <
1

4𝜋2 𝑓 2
1 𝐿

= 9,8 · 10−10 F

et de même

𝑓0 < 𝑓2 = 300 kHz donc 2𝜋
√
𝐿𝐶 >

1
𝑓2

d’où 𝐶 >
1

4𝜋2 𝑓 2
2 𝐿

= 2,4 · 10−10 F .

Ainsi,
0,24 nF < 𝐶 < 0,98 nF .

3 Pour que le filtre soit le plus sélectif possible, il faut que sa bande passante soit la plus étroite possible. Pour un
passe-bande, elle vaut (résultat de cours à connaître)

Δ𝜔 =
𝜔0
𝑄

.
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Il faut donc maximiser le facteur de qualité, qui vaut pour un RLC série

𝑄 =
1
𝑅

√︂
𝐿

𝐶
.

Comme les valeurs de 𝐿 et 𝐶 sont imposées par la fréquence captée, la seule possibilité est de choisir la résistance
la plus petite possible.

Dans le cas des récepteurs radios amateur « historiques » qui reposaient plus ou moins sur ce système, la
résistance n’était que de l’ordre de quelques ohms.

Exercice 9 : Atténuateur différentiel oral CCINP MP | 2 | 2 |

⊲ Fonction de tranfert ;
⊲ Analyse d’un diagramme de Bode ;
⊲ Reconstruction du signal de sortie d’un filtre.

1 Une association RC parallèle a pour impédance

𝑍 =
1

j𝐶𝜔 + 1
𝑅

=
𝑅

1 + j𝑅𝐶𝜔 .

Avec un pont diviseur,

𝐻 =
𝑍2

𝑍1 + 𝑍2
=

1

1 +
𝑍1

𝑍2

d’où 𝐻 =
1

1 + 𝑅1
𝑅2

× 1 + j𝑅2𝐶2𝜔

1 + j𝑅1𝐶1𝜔

.

2 La fonction de transfert fait apparaître deux pulsations caractéristiques 𝜔1 = 1/𝑅1𝐶1 et 𝜔2 = 1/𝑅2𝐶2, ce qui
explique l’existence de trois domaines dans le diagramme de Bode. Supposons 𝜔1 < 𝜔2.
⊲ Domaine basses fréquences : 𝜔 ≪ 𝜔1, 𝜔2

𝐻 ∼ 1

1 + 𝑅1
𝑅2

= cte

d’où une asymptote horizontale.
⊲ Domaine intermédiaire : 𝜔1 ≪ 𝜔 ≪ 𝜔2

𝐻 ∼ 1

1 + 𝑅1
𝑅2

1
j𝑅1𝐶1𝜔

≃ j𝑅2𝐶1𝜔 d’où 𝐺dB ∼ 20 log(𝑅2𝐶1𝜔) .

ce qui est cohérent avec la pente de +20 dB/décade observée dans ce domaine.
⊲ Domaine hautes fréquences : 𝜔 ≫ 𝜔1, 𝜔2

𝐻 ∼ 1

1 + 𝑅1
𝑅2

× j𝑅2𝐶2𝜔

j𝑅1𝐶1𝜔

=
1

1 + 𝐶2
𝐶1

= cte

d’où une deuxième asymptote horizontale.

Justifier que 1 ≪
����𝑅1𝑅2 1

j𝑅1𝐶1𝜔

���� dans le domaine de fréquence intermédiaire n’est pas du tout évident, car

les valeurs des composants ne sont pas connues à ce stade. Il s’agit cependant de la seule façon d’obtenir
une équation de droite, et je ne pense pas que l’auteur du sujet attende plus de justification à ce stade. Une
fois les valeurs de 𝑅1 et 𝑅2 obtenues à la question suivant, on peut le justifier a posteriori : 𝑅1/𝑅2 = 1 · 103,
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et le domaine intermédiaire est tel que 𝑅1𝐶1𝜔 = 𝜔/𝜔1 < 1 · 102, ce qui permet de confirmer que le 1 est
bien négligeable. Pour faire les choses de manière complètement rigoureuse, il aurait donc fallu mélanger
les questions 2 et 3 pour déterminer le rapport 𝑅1/𝑅2 avant d’étudier le domaine intermédiaire.

Il n’y a aucun moyen a priori de savoir comment s’ordonnent les valeurs des pulsations 𝜔1 et 𝜔2. Sup-
poser 𝜔1 < 𝜔2 comme nous l’avons fait conduit à des résultats cohérents avec le diagramme représenté.
Supposer au contraire 𝜔2 > 𝜔1 conduit à une pente négative dans le domaine intermédiaire, ce qui est
contradictoire avec le diagramme, et permet de valider la première hypothèse.

3 Raisonnons dans les deux domaines extrêmes. En basse fréquence,��𝐻 �� = 10−60/20 = 1 · 10−3

Une aussi faible valeur implique forcément 𝑅1/𝑅2 ≫ 1, ce qui permet d’approximer��𝐻 �� ≃ 1
𝑅1/𝑅2

d’où 𝑅2 = 10−3 𝑅1 = 100Ω .

La première pulsation caractéristique est

𝜔1 =
1

𝑅1𝐶1
= 102 rad · s−1 d’où 𝐶1 =

1
𝑅1𝜔1

= 1 · 10−7 F .

En utilisant l’équivalent haute fréquence,��𝐻 �� = 10−20/20 = 1
10 d’où 𝐶2 = 9𝐶1 = 9 · 10−7 F .

On peut aussi raisonner sur la seconde pulsation caractéristique, qui vaut

𝜔2 =
1

𝑅2𝐶2
= 104 rad · s−1 d’où 𝐶2 =

1
𝑅2𝜔2

= 1 · 10−6 F .

Les deux valeurs sont proches mais légèrement différentes, ce qui vient d’une simplification faite par
l’énoncé dont les valeurs sont légèrement incohérentes les unes avec les autres. En prenant𝐶2 = 9 · 10−7 F,
alors 𝜔2 = 1,1 · 104 rad · s−1 au lieu de 1,0 rad · s−1 comme l’énoncé le sous-entend. Les deux valeurs
seraient bien sûr considérées correctes tant que les raisonnements sont bons !

4 Le signal d’entrée s’écrit
𝑒 (𝑡) = 𝐴 cos(Ω𝑡 + 𝜑0) +𝐴 cos(Ω′𝑡 + 𝜑0) .

Supposons les deux pulsations suffisamment éloignées de 𝜔1 et 𝜔2 pour pouvoir assimiler la fonction de transfert
à ses équivalents asymptotiques. La fonction de transfert est réelle dans ces deux limites, il n’y a donc pas de
déphasage. Alors,

𝑠 (𝑡) = 𝐴

1000 cos(Ω𝑡 + 𝜑0) +
𝐴

10 cos(Ω
′𝑡 + 𝜑0) .

5 Supposons là aussi que la fonction de transfert peut être assimilée à son équivalent dans le domaine intermé-
diaire pour les deux pulsations. Celui-ci étant imaginaire pur, le plus simple pour les calculs est de repasser dans
le domaine temporel :

𝐻 ∼ j𝑅2𝐶1𝜔 d’où 𝑠 (𝑡) = 𝑅2𝐶1
d𝑒
d𝑡 .

On peut alors en déduire

𝑠 (𝑡) = −𝑅2𝐶1𝐴Ω sin(Ω𝑡 + 𝜑0) − 𝑅2𝐶1𝐴Ω
′ sin(Ω′𝑡 + 𝜑0) .

Même s’il ne se « voit » pas directement, le déphasage se manifeste par la transformation des cosinus en
sinus dans les expressions des signaux d’entrée et de sortie.
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Exercice 10 : Filtre ADSL 2 | 2 |

⊲ Fonction de transfert ;
⊲ Analyse d’un diagramme de Bode.

1 Récupérer les signaux téléphoniques demande d’utiliser un filtre passe-bas alors que les signaux internet sont
récupérés par un filtre passe-haut. La fréquence de coupure doit être intermédiaire entre les fréquences extrêmes
des canaux téléphone et internet, ce qui est bien le cas de 10 kHz. Comme les signaux sont déjà relativement atténués
à la fréquence de coupure (typiquement −3 dB, soit un facteur 0,71 en amplitude), il ne faut pas choisir la limite de
la bande de fréquence d’intérêt comme fréquence de coupure.

2 Dans la limite basse fréquence, les bobines sont équivalentes à des fils et 𝑠 = 0 : ce filtre coupe donc les
basses fréquences. Dans la limite haute fréquence, les bobines sont équivalentes à des interrupteurs ouverts. Aucun
courant ne peut donc parcourir le circuit, et on déduit de la loi des mailles 𝑠 = 𝑒 . Le filtre est donc un filtre passe-
haut, qui permet de récupérer les hautes fréquences et qu’il faut donc brancher sur la box internet.

𝑅 𝑅

𝐿 𝐿𝐸 𝑆 ⇐⇒

𝑅

𝐿 𝑍𝑅𝐿𝐸 𝑈 =
j𝐿𝜔 + 𝑅

j𝐿𝜔 𝑆

⇐⇒

𝑅

𝑌p𝐸 𝑈 =
j𝐿𝜔 + 𝑅

j𝐿𝜔 𝑆

Figure 6 – Fonction de transfert du filtre ADSL. Version couleur sur le site de la classe.

3 Raisonnons à partir de la figure 6. Comme il n’est pas possible d’utiliser directement un pont diviseur entre 𝑆
et 𝐸, on commence par assoicer la bobine et la résistance encadrées en une impédance complexe 𝑍𝑅𝐿 = 𝑅 + j𝐿𝜔 . La
résistance et la bobine sont montées en série, donc d’après le pont diviseur et avec les notations de la figure,

𝑆

𝑈
=

j𝐿𝜔
𝑅 + j𝐿𝜔 donc 𝑈 =

𝑅 + j𝐿𝜔
j𝐿𝜔 𝑆 .

La tension 𝑈 est aux bornes de l’association parallèle de 𝑍𝐿𝑅 et 𝐿, encadrée en bleu. Cette association a pour
admittance équivalente

𝑌p =
1

j𝐿𝜔 + 1
𝑍𝑅𝐿

=
1

j𝐿𝜔 + 1
𝑅 + j𝐿𝜔 =

𝑅 + 2j𝐿𝜔
j𝐿𝜔 (𝑅 + j𝐿𝜔)

Enfin, on applique un diviseur de tension entre 𝑍p = 1/𝑌p et 𝑅,

𝑈

𝐸
=

𝑍p

𝑅 + 𝑍p
=

1
1 + 𝑅 𝑌p

soit 𝑅 + j𝐿𝜔
j𝐿𝜔

𝑆

𝐸
=

1
1 + 𝑅 𝑌p

donc 𝐻 =
j𝐿𝜔

𝑅 + j𝐿𝜔 × 1
1 + 𝑅 𝑌p
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Remplaçons 𝑌p par son expression,

𝐻 =
j𝐿𝜔

𝑅 + j𝐿𝜔 × 1

1 + 𝑅
𝑅 + 2j𝐿𝜔

j𝐿𝜔 (𝑅 + j𝐿𝜔)

=
j𝐿𝜔

𝑅 + j𝐿𝜔 + 𝑅 (𝑅 + 2j𝐿𝜔)
j𝐿𝜔

=
(j𝐿𝜔)2

j𝑅𝐿𝜔 + (j𝐿𝜔)2 + 𝑅2 + 2j𝑅𝐿𝜔

=
(j𝐿𝜔)2

j𝑅𝐿𝜔 + (j𝐿𝜔)2 + 𝑅2 + 2j𝑅𝐿𝜔

=
−𝐿2𝜔2

𝑅2 + 3j𝑅𝐿𝜔 − 𝐿2𝜔2

Maintenant que la fonction de tranfert se présente bien sous la forme d’un quotient de deux polynômes en j𝜔 ,
mettons-là sous la forme indiquée par l’énoncé. Le degré des polynômes en 𝜔 est le bon, il reste seulement à faire
apparaître 1 comme coefficient de degré 0 du polynôme du dénominateur en divisant numérateur et dénominateur
par 𝑅2,

𝐻 =

−𝐿2

𝑅2𝜔
2

1 + 3j𝐿
𝑅
𝜔 − 𝐿2

𝑅2𝜔
2
=

−𝑥2
1 + 3j𝑥 − 𝑥2

avec 𝑥 =
𝐿𝜔

𝑅
=

𝜔

𝜔0

4 Dans la limite très basse fréquence, 𝜔 ≪ 𝜔0 et 𝑥 ≪ 1. En ne conservant que le terme dominant,

𝐻 (𝑥) ∼ −𝑥2
1 = −𝑥2 donc

{
𝐺dB = 20 log

��𝐻 (𝑥)
�� ∼ 40 log𝑥

𝜑 ∼ 𝜋

La pente de l’asymptote très basse fréquence est donc de 40 dB/décade en gain et une horizontale valant 𝝅 en
phase.

Dans la limite très haute fréquence, 𝜔 ≫ 𝜔0 et 𝑥 ≫ 1. En ne conservant que le terme dominant,

𝐻 (𝑥) ∼ −𝑥2
−𝑥2 = 1 donc

{
𝐺dB = 20 log

��𝐻 (𝑥)
�� ∼ 0

𝜑 ∼ 0

Les deux asymptotes très haute fréquence sont des horizontales à hauteur 0 dB en gain et 0 rad en phase.

La fréquence maximale du canal téléphonique est de 4 kHz. Par lecture du diagramme de Bode, le gain en
décibel est de l’ordre de −18 dB. Comme

𝐺dB = 20 log
��𝐻 �� alors

��𝐻 �� = 10𝐺dB/20 = 10−18/20 ∼ 0,13 .

Ainsi, cette composante est atténuée d’un peu moins d’un facteur 10.

5 D’après la fonction de transfert,

𝜔0 = 2𝜋 𝑓0 =
𝑅

𝐿
d’où 𝐿 =

𝑅

2𝜋 𝑓0
= 1,6mH .

Cette valeur d’inductance correspond bien à celle indiquée sur les fiches techniques des filtres ADSL.
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Exercice 11 : Filtre RLC oral banque PT | 3 | 1

⊲ Fonction de transfert ;
⊲ Analyse d’un diagramme de Bode ;
⊲ Signal de sortie d’un filtre.

1 Dans la limite très basse fréquence, la bobine est équivalente à un fil et 𝐶 à un interrupteur ouvert, donc
l’intensité dans la branche est nulle, et ainsi 𝑣s = 0 + 0. Dans la limite très haute fréquence, 𝐶 est équivalent à un
fil donc on a directement 𝑣s = 𝑣e.
{ le filtre est un passe-haut.

2 Diviseur de tension :

𝐻 =
𝑍𝑅𝐿

𝑍𝑅𝐿 + 𝑍𝐶
=

𝑅 + j𝐿𝜔

𝑅 + j𝐿𝜔 + 1
j𝐶𝜔

.

Pour passer à la forme canonique, on multiplie en haut et en bas par j𝐶𝜔 ,

𝐻 =
j𝑅𝐶𝜔 − 𝐿𝐶𝜔2

1 + j𝑅𝐶𝜔 − 𝐿𝐶𝜔2 .

On identifie l’opération à faire en comparant la forme canonique à l’expression que l’on a : le dénomina-
teur n’est pas fractionnaire.

Pour avancer, on peut proposer à l’examinateur d’identifier directement 𝜔0 et 𝑄 car il s’agit d’un RLC
série, donc d’un circuit de référence. S’il refuse, il faut alors faire le calcul ...

Par identification du dénominateur avec la forme canonique, on en déduit

−𝐿𝐶𝜔2 = −𝑥2 = −𝜔2

𝜔 2
0

soit 𝜔0 =
1

√
𝐿𝐶

.

et

j𝑅𝐶𝜔 =
j𝑥
𝑄

=
j𝜔
𝑄𝜔0

soit 𝑄 =
1

𝑅𝐶𝜔0
d’où 𝑄 =

1
𝑅

√︂
𝐿

𝐶
.

3 En très basse fréquence,

𝐻 ∼

j𝑥
𝑄

1 =
j𝑥
𝑄

d’où 𝐺dB ∼ 20 log𝑥 − 20 log𝑄 ,

la pente est donc de +20 dB/décade.
En très haute fréquence,

𝐻 ∼ −𝑥2
−𝑥2 = 1 d’où 𝐺dB = 0

ce qui est conforme avec une asymptote horizontale.

Avec l’ordonnée à l’origine de l’asymptote TBF (𝑥 = 100 = 1), 𝐺dB = −20 log𝑄 = −20 dB, on déduit log𝑄 = 1
soit 𝑄 = 10. On peut aussi utiliser le fait que 𝐺TBF = 0 lorsque 𝑥 = 𝑄 , ou encore exprimer la valeur exacte
de

��𝐻 (𝑥 =1)
�� en fonction de 𝑄 .

Bien que le filtre soit d’ordre 2, il n’a pas d’asymptote de pente ±40 dB/décade : cela n’a rien de contra-
dictoire, et vient ici du fait qu’on mesure la sortie aux bornes d’une association de dipôles.

4 La question n’est pas simple : changer 𝑅 modifie la valeur de𝑄 , mais cela a un impact énorme sur le diagramme
de Bode, d’une part via l’intermédiaire de l’ordonnée à l’origine de l’asymptote basse fréquence et d’autre part car
elle contraint l’existence ou non d’une résonance. Une illustration est donnée sur la figure 7.
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Figure 7 – Diagrammes de Bode asymptotique d’un filtre RLC. Les trois diagrammes sont tracés pour la même
fonction de transfert, la même pulsation propre, seule la valeur du facteur de qualité est modifiée : elle vaut 0,01
pour la courbe orange, 10 pour la courbe rouge (cas de l’énoncé) et 1000 pour la courbe violette.

Le signal carré est la dérivée du signal triangulaire. Le facteur de qualité du filtre est donc tel que tout le spectre
du signal soit dans le domaine très basse fréquence du filtre : comme la pente de l’asymptote est de +20 dB/décade,
il se comporte en dérivateur.

Si l’on observe des impulsions, cela signifie que les variations brusques du signal, associées aux hautes fré-
quences, sont sensiblement mieux transmises que les variations lentes, associées aux basses fréquences et qui
décrivent son allure globale. Le facteur de qualité est donc tel que les basses fréquence du spectre soient coupées
et les hautes fréquences transmises.

Par exemple, si la fréquence fondamentale du signal est telle que 𝑥 = 1 · 10−3, alors la première situation
pourrait correspondre à la courbe rouge de la figure 7, et la deuxième à la courbe orange.

Exercice 12 : Opérateur retard oral banque PT | 3 | 2

⊲ Fonction de transfert ;
⊲ Tracé d’un diagramme de Bode.

1 Pour le signal considéré, la sortie s’écrit

𝑠 (𝑡) = 𝐸 cos(𝜔 (𝑡 − 𝜏)) .

En représentation complexe,

𝑠 = 𝐸 ej𝜔 (𝑡−𝜏 ) = 𝐸 ej𝜔𝑡︸︷︷︸
=𝑒

e−j𝜔𝜏 d’où 𝐻0(j𝜔) = e−j𝜔𝜏 .

On en déduit
𝐺dB = 20 log

��ej𝜔𝜏 �� = 20 log 1 = 0 et 𝜑 = arg ej𝜔𝜏 = 𝜔𝜏 .

Le gain est constamment nul et la phase croit linéairement avec la pulsation.

2 Notons 𝑢𝐶 la tension aux bornes du condensateur. La bobine de droite et la résistance sont parcourues par le
même courant, donc par un pont diviseur de tension

𝑠

𝑢𝐶
=

𝑅

𝑅 + j𝐿𝜔 .
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La bobine de gauche forme également un pont diviseur avec l’association des trois autres dipôles, qui a pour
admittance

𝑌éq = j𝐶𝜔 + 1
𝑅 + j𝐿𝜔 .

� � � Attention ! La bobine de gauche et le condensateur ne sont pas traversés par le même courant, et
ne forment donc pas un pont diviseur de tension !

Par un pont diviseur,
𝑢𝐶

𝑒
=

𝑍éq

j𝐿𝜔 + 𝑍éq
=

1
1 + j𝐿𝜔 𝑌éq

et on en déduit
𝐻 =

𝑢𝐶

𝑒
×

𝑠

𝑢𝐶
=

1
1 + j𝐿𝜔 𝑌éq

× 𝑅

𝑅 + j𝐿𝜔 .

Il vient alors

𝐻 =
1

1 + (j𝜔)2𝐿𝐶 + j𝐿𝜔
𝑅 + j𝐿𝜔

× 𝑅

𝑅 + j𝐿𝜔

=
𝑅

𝑅 + 2j𝐿𝜔 + (j𝜔)2𝑅𝐿𝐶 + (j𝜔)3𝐿2𝐶

𝐻 =
1

1 + j𝜔 2𝐿
𝑅

+ (j𝜔)2𝐿𝐶 + (j𝜔)3𝐿
2𝐶

𝑅

.

3 Pour pouvoir identifier facilement les deux fonctions de transfert, le plus simple est d’écrire 𝐻0 sous la forme

𝐻0(j𝜔) =
1

ej𝜔𝜏
=

1

1 + j𝜔𝜏 + (j𝜔)2𝜏
2

2

.

Il est également possible de faire un développement limité de chaque fonction de transfert en utilisant
pour 𝐻 un développement du type 1/(1 + 𝑥) ... mais gérer la cohérence des ordres du développement
limité est plus compliqué.

Pour que les dénominateurs des fonctions de transfert 𝐻0 et 𝐻 s’identifient aux deux premiers ordres, il faut que


𝜏 =

2𝐿
𝑅

𝜏2

2 = 𝐿𝐶

soit 1
2
4𝐿 �2
𝑅2 = �𝐿𝐶 d’où 𝑅 =

√︂
2𝐿
𝐶

et le retard induit par le filtre a alors pour expression

𝜏 =
2𝐿
𝑅

.
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Exercice 13 : Filtre en double T 3 | 3

⊲ Fonction de transfert ;
⊲ Bande passante.

𝐶

𝐼1

𝐶

𝐼2

𝑅

𝐼4

𝑅

𝐼5

𝐵

2𝐶
𝐼6

𝐴

𝑅/2
𝐼3

𝑒 𝑠

Figure 8 – Filtre coupe-bande en double T.

1 À basse fréquence, les condensateurs sont équivalents à des interrupteurs ouverts. On déduit alors de la loi des
nœuds que le courant entrant dans le filtre est le même que celui traversant les deux résistances et le même que
le courant sortant du filtre. Or par hypothèse le filtre est utilisé en sortie ouverte, donc aucun courant ne sort du
filtre. On en déduit qu’aucun courant ne parcourt les résistances, et la loi d’additivité des tensions appliquée à la
maille incluant les résistances permet d’écrire

𝑒 + 𝑅 × 0 + 𝑅 × 0 = 𝑠 donc 𝑠 = 𝑒

Ainsi, les signaux basse fréquence sont transmis par le filtre.

À très haute fréquence, les condensateurs sont équivalents à des fils. La loi d’additivité des tensions appliquée
à la maille incluant les condensateurs permet d’écrire

𝑒 + 0 + 0 = 𝑠 donc 𝑠 = 𝑒

Ainsi, les signaux haute fréquence sont eux aussi transmis par le filtre.

Ainsi, le filtre a pour rôle d’éliminer une bande de fréquence intermédiaire : il s’agit d’un filtre coupe-bande.

2 Au nœud 𝐴,

𝐼1 + 𝐼2 + 𝐼3 = 0 d’où j𝐶𝜔 (𝐸 −𝑉𝐴) + j𝐶𝜔 (𝑆 −𝑉𝐴) +
2
𝑅
(0 −𝑉𝐴) = 0

ce qui donne

𝑉𝐴 =
j𝑅𝐶𝜔 (𝐸 + 𝑆)
2(1 + j𝑅𝐶𝜔)

En procédant de même au nœud 𝐵,

1
𝑅
(𝐸 −𝑉𝐵) +

1
𝑅
(𝑆 −𝑉𝐵) + 2j𝐶𝜔 (0 −𝑉𝐵) = 0 d’où 𝑉𝐵 =

𝐸 + 𝑆

2(1 + j𝑅𝐶𝜔) .

3 D’après la loi des nœuds appliquée en sortie du flitre, supposé en sortie ouverte donc sans courant de sortie,

𝐼2 + 𝐼5 = 0 soit j𝐶𝜔 (𝑉𝐴 − 𝑆) + 1
𝑅
(𝑉𝐵 − 𝑆) = 0 d’où 𝑆 =

𝑉B + j𝑅𝐶𝜔 𝑉𝐴

1 + j𝑅𝐶𝜔
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En reprenant les expressions de 𝑉𝐴 et 𝑉𝐵 ,

𝑆 =
j𝑅𝐶𝜔

1 + j𝑅𝐶𝜔 𝑉𝐴 + 1
1 + j𝑅𝐶𝜔 𝑉𝐵

=
j𝑅𝐶𝜔

1 + j𝑅𝐶𝜔
j𝑅𝐶𝜔 (𝐸 + 𝑆)
2(1 + j𝑅𝐶𝜔) + 1

1 + j𝑅𝐶𝜔
𝐸 + 𝑆

2(1 + j𝑅𝐶𝜔)

=
(j𝑅𝐶𝜔)2

2(1 + j𝑅𝐶𝜔)2 (𝐸 + 𝑆) + 1
2(1 + j𝑅𝐶𝜔)2 (𝐸 + 𝑆)

𝑆 =
1 − (𝑅𝐶𝜔)2
2(1 + j𝑅𝐶𝜔)2 (𝐸 + 𝑆)

Séparons maintenant 𝐸 et 𝑆 , [
1 − 1 − (𝑅𝐶𝜔)2

2(1 + j𝑅𝐶𝜔)2

]
𝑆 =

1 − (𝑅𝐶𝜔)2
2(1 + j𝑅𝐶𝜔)2𝐸

ce qui donne en réduisant au même dénominateur et en simplifiant par ce dénominateur[
2(1 + j𝑅𝐶𝜔)2 − 1 + (𝑅𝐶𝜔)2

]
𝑆 =

[
1 − (𝑅𝐶𝜔)2

]
𝐸

Finalement,

𝐻 =
𝑆

𝐸
=

1 − (𝑅𝐶𝜔)2
2(1 + j𝑅𝐶𝜔)2 − 1 + (𝑅𝐶𝜔)2

=
1 − (𝑅𝐶𝜔)2

2(1 + 2j𝑅𝐶𝜔 − 𝑅𝐶𝜔2) − 1 + (𝑅𝐶𝜔)2

𝐻 =
1 − 𝑅𝐶𝜔2

1 + 4j𝑅𝐶𝜔 − (𝑅𝐶𝜔)2

On identifie enfin avec la forme proposée par l’énoncé,

𝐻 (𝑥) = 1 − 𝑥2

1 − 𝑥2 + j 𝑥
𝑄

,

qui implique nécessairement de poser 𝑥 = 𝑅𝐶𝜔 , d’où on déduit

𝜔c =
1
𝑅𝐶

et 𝑄 =
1
4 .

4 On a directement ��𝐻 (1)
�� = 0 donc 𝑥c = 1 .

Un signal d’entrée de pulsation 𝜔c = 1/𝑅𝐶 est donc complètement coupé par le filtre.

𝐶 =
1

2𝜋 𝑓c 𝑅
= 3,2 µF .

5 Réécrivons d’abord la fonction de transfert :

𝐻 (𝑥) = 1 − 𝑥2

1 − 𝑥2 + j 𝑥
𝑄

×

𝑄

j𝑥
𝑄

j𝑥

=

j𝑄
(
𝑥 − 1

𝑥

)
1 + j𝑄

(
𝑥 − 1

𝑥

) .
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En généralisant la définition de la bande passante, on peut définir la bande coupée du filtre comme l’intervalle de
fréquence pour lequel

��𝐻 (𝜔)
�� ≤ 𝐻max/

√
2 = 1/

√
2. Les pulsations de coupure 𝑥± sont donc telles que

|𝐻 (𝑥) |2 = 1
2 =

𝑄2
(
𝑥 − 1

𝑥

)2
1 +𝑄2

(
𝑥 − 1

𝑥

)2
ce qui amène à l’équation

𝑄2
(
𝑥 − 1

𝑥

)2
= 1 soit 𝑄

(
𝑥 − 1

𝑥

)
= ±1 donc 𝑥2 ± 1

𝑄
𝑥 − 1 = 0

Ce polynôme admet comme discriminant 4 + 1/𝑄2 > 0, donc les solutions mathématiques de l’équation de départ
sont

𝑥 =
1
2

(
± 1
𝑄

±
√︂
4 + 1

𝑄2

)
.

Les solutions physiques correspondant aux pulsations de coupure sont les deux solutions positives parmi les quatre.
Comme √︂

4 + 1
𝑄2 >

√︂
1
𝑄2 =

1
𝑄

on en déduit qu’il s’agit de

𝑥± =

√︂
4 + 1

𝑄2 ± 1
𝑄

d’où 𝑓± = 𝑓0

(√︂
4 + 1

𝑄2 ± 1
𝑄

)
.

La bande coupée Δ𝑓 = 𝑓+ − 𝑓− vaut donc

Δ𝑓 =
𝑓0
𝑄

= 200Hz .

Le filtre est donc assez peu sélectif, et atténue une large bande de fréquence. Il n’est utilisable que si le signal
d’intérêt est de fréquence nettement supérieure à 50Hz.

Exercice 14 : Conception d’un filtre de signaux acoustiques 2 | 2

⊲ Diagramme de Bode.

1 Le gabarit du filtre est représenté figure 9. La condition sur le gain nominal permet d’éliminer la zone colorée
en bleu. La contrainte sur les basses fréquences permet d’éliminer la zone en jaune. La contrainte sur les hautes
fréquences permet enfin d’éliminer la zone colorée en rouge.

10−2 10−1 100 101 102 103 104

0
−10
−20
−30
−40

𝑓 (kHz)

𝐺
dB

(d
B)

Figure 9 – Gabarit du filtre pour signaux acoustiques. Version couleur sur le site de la classe.

2.a Pour un filtre passe bas du premier ordre, le diagramme de Bode en gain a une asymptote horizontale
dans la limite très basse fréquence et une asymptote de pente −20 dB/décade dans la limite très haute
fréquence. Pour 𝑓 = 𝑓c, 𝐻 = 1/(1 + j) donc

��𝐻 �� = 1/
√
2 et 𝐺dB = −3 dB.
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2.b Pour savoir si ce filtre peut satisfaire au cahier des charges, il faut superposer sa courbe de gain au gabarit
du filtre et vérifier qu’elle n’empiète pas sur les zones interdites du gabarit. On voit que ce n’est pas le cas : la
courbe de gain passe dans la zone représentée en rouge sur le gabarit, signe que le passe-bas d’ordre 1 n’atténue pas
suffisamment les fréquences proches de 40 kHz. Pour éviter cela, il faut que l’asymptote très haute fréquence soit
plus inclinée. Or la pente est d’autant plus élevée que l’ordre du filtre est élevé : utiliser un filtre d’ordre supérieur
devrait permettre de résoudre le problème.

10−2 10−1 100 101 102 103 104

0
−10
−20
−30
−40
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𝐺
dB

(d
B)

Figure 10 – Gabarit du filtre pour signaux acoustiques superposé à la courbe en gain d’un passe-bas d’ordre 1.

3.a La courbe de gain d’un filtre passe-bas du second ordre asymptote horizontale dans la limite très basse
fréquence et une asymptote de pente−40 dB/décade dans la limite très haute fréquence. Par contre, il peut
présenter une résonance au voisinage de sa fréquence centrale. Pour voir s’il peut satisfaire au cahier des charges,
on superpose sur la figure 11 le diagramme asymptotique au gabarit, ce qui permet de voir que le diagramme
asymptotique est complètement compris dans le zone permise du gabarit. Ainsi, ce filtre peut potentiellement
satisfaire au cahier des charges.

10−2 10−1 100 101 102 103 104
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−40
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Figure 11 – Gabarit du filtre pour signaux acoustiques superposé à la courbe asymptotique en gain d’un passe-
bas d’ordre 2.

3.b Lorsque 𝑓 = 𝑓c, c’est-à-dire 𝑥 = 1,

𝐻 =
1
j/𝑄 donc 𝐺dB = 20 log𝑄 .

À la fréquence de coupure, il faut

−3 dB ≤ 𝐺dB ≤ 0 dB soit 10−3/20 ≤ 𝑄 ≤ 100 et 0,71 ≤ 𝑄 ≤ 1

Notons que si𝑄 > 1/
√
2 il y a résonance, c’est-à-dire que la fonction de transfert passe par un maximum

pour 𝑓r < 𝑓0, de gain supérieur au gain nominal. La courbe de gain empiète alors sur la zone interdite
bleue du gabarit. Cependant, le gain nominal n’est pas forcément le gain maximal autorisé, mais plutôt
la valeur asymptotique : on peut penser qu’une résonance large et peu marquée est acceptable.
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Problème ouvert

Exercice 15 : Dipôles masqués oral CCINP MP | 3 | 1

⊲ Problème ouvert.

⊲ Comme le courant dans le circuit est non nul en régime continu, alors le condensateur est forcément monté en
parallèle d’un autre dipôle ;

⊲ Comme la tension de sortie est nulle en basse fréquence, elle est forcément mesurée aux bornes de la bobine ;
⊲ Comme la tension de sortie est nulle en haute fréquence, elle est forcément mesurée aux bornes du condensateur.
{ Le dipôle 𝐷2 est nécessairement une association parallèle entre la bobine et le condensateur ;
{ Le dipôle 𝐷1 est donc forcément la résistance : s’il s’agissait d’un fil on aurait 𝑠 = 𝑒 à toute fréquence ;
{ Le montage est donc celui de la figure 12.

𝑅 𝑖

𝐿 𝐶𝑒 𝑠

Figure 12 – Les dipôles démasqués !.

• Analyse en régime continu : la bobine équivaut à un fil, donc la tension aux bornes de la résistance est directement
égale à 𝐸, d’où avec la loi d’Ohm

𝐸 = 𝑅𝐼 soit 𝑅 =
𝐸

𝐼
= 3 kΩ .

• Analyse en régime sinusoïdal : l’admittance équivalente de l’association de la bobine et du condensateur est

𝑌 =
1

j𝐿𝜔 + j𝐶𝜔 .

Avec un pont diviseur de tension,

𝐻 =
1/𝑌

𝑅 + 1/𝑌 =
1

1 + 𝑌𝑅
soit 𝐻 =

1

1 + 𝑅

j𝐿𝜔 + j𝑅𝐶𝜔
.

On peut donc identifier avec la forme canonique donnée,
𝑅

j𝐿𝜔 = − j𝑄𝜔0
𝜔

j𝑅𝐶𝜔 = j𝑄 𝜔

𝜔0

soit


𝑄𝜔0 =

𝑅

𝐿
𝑄

𝜔0
= 𝑅𝐶

D’après les valeurs expérimentales,

𝜔0 = 2𝜋 𝑓0 = 6,3 · 103 rad · s−1 et 𝑄 =
𝑓0
Δ𝑓

= 5 .

On en déduit

𝐿 =
𝑅

𝑄𝜔0
= 95mH et 𝐶 =

𝑄

𝜔0𝑅
= 2,7 · 10−7 F .
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