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Thermodynamique – TD 1 Lycée Corneille, MPSI 2

Introduction à la thermodynamique

Modèle du gaz parfait

Exercice 1 : Pression des pneus 1 | 1

⊲ Équation d’état des gaz parfaits.

1 Comme la quantité de matière 𝑛 d’air contenu dans le pneu et son volume𝑉 sont des constantes, alors d’après
l’équation d’état des gaz parfaits,

𝑃1
𝑇1

=
𝑃2
𝑇2

=
𝑛𝑅

𝑉

d’où on déduit

𝑃2 =
𝑇2
𝑇1
𝑃1 = 2,5 bar .

2 La variation relative de pression est supérieure à 10 %, ce qui est loin d’être négligeable. Le meilleur conseil à
donner est de refaire la pression des pneus de la voiture. Notez d’ailleurs qu’il est préconisé de la vérifier chaque
mois ... et indispensable de le faire au moins deux fois par an, avant les grands trajets !

Exercice 2 : Fuite d’hélium 2 | 1

⊲ Équation d’état des gaz parfaits ;
⊲ Vitesse quadratique moyenne.

1 D’après la loi des gaz parfaits,

𝑝𝑉 =
𝑚

𝑀
𝑅𝑇 d’où 𝑚 =

𝑀𝑝𝑉

𝑅𝑇
= 3,4 g .

La densité particulaire est reliée au nombre total d’atomes 𝑁 contenus dans la bouteille et à son volume par 𝑛★ =

𝑁 /𝑉 . Ainsi, l’équation d’état donne

𝑝𝑉 =
𝑁

NA
𝑅𝑇 d’où 𝑛★ =

𝑝NA
𝑅𝑇

= 5,1 · 1025 atomes/m3 .

2 Par définition de la température cinétique,

1
2𝑚𝑢2 =

3
2𝑘B𝑇

où𝑚 =𝑀/NA est la masse d’un atome. Comme 𝑅 =NA𝑘B,

𝑢 =

√︂
3𝑅𝑇
𝑀

= 1,4 · 103m · s−1 .
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3 La masse restante𝑚′ vaut

𝑚′ =
𝑀𝑝′𝑉

𝑅𝑇 ′ = 2,0 g

si bien que
Δ𝑚 =𝑚 −𝑚′ = 1,0 g .

4 Toujours d’après l’équation d’état, on a dans ce nouvel état

𝑝𝑉 =
𝑚′

𝑀
𝑅𝑇 ′′ donc 𝑇 ′′ =

𝑀𝑝𝑉

𝑚′𝑅
soit 𝑇 ′′ =

𝑝

𝑝′
𝑇 ′ = 435 K .

Exercice 3 : Existence d’une atmosphère 2 | 1

⊲ Vitesse quadratique moyenne.

1 On trouve 𝑣lib,T = 1,1 · 104m · s−1 et 𝑣lib,L = 2,4 · 103m · s−1.

2 À la surface de la Terre (𝑇 = 20 °C), la vitesse quadratique moyenne vaut (cf. cours)

𝑢T =

√︄
3𝑅𝑇
𝑀N2

= 5,1 · 102m · s−1 .

Ainsi, elle est très inférieure à la vitesse de libération, ce qui permet de comprendre l’existence d’une atmosphère
stable.

Attention, la vitesse quadratique moyenne n’est ... qu’une moyenne ! Un certain nombre de molécules du
gaz, de l’ordre de la moitié, ont une vitesse supérieure à𝑢. La condition de non-dispersion de l’atmosphère
par agitation thermique doit donc s’écrire 𝑢 ≪ 𝑣lib, mais pas 𝑢 ≤ 𝑣lib.

3 Pour qu’une atmosphère composée de diazote puisse exister à la surface de la Lune, il faudrait avoir

𝑢L ≪ 𝑣lib,L soit 𝑇 ≪
𝑀N2

𝑣 2
lib,L

3𝑅 = 6,4 · 103 K .

On peut penser que cette condition est globalement remplie, et donc que notre explication n’est donc pas suffi-
sante, puisque la température de la Lune devrait permettre l’existence d’une atmosphère stable. En pratique, le
champ magnétique joue aussi un rôle essentiel en formant un bouclier qui dévie les vents solaires (flux de parti-
cules chargées, principalement des protons et des électrons, éjecté en continu du Soleil dans toutes les directions),
et protège l’atmosphère. La Lune ne produisant pas de champ magnétique, son hypothétique atmosphère serait
arrachée par le vent solaire.

Exercice 4 : Gaz de Clausius 2 | 1

⊲ Équation d’état.

1 Le volume exclu représente un volume dans lequel ne peuvent pas pénétrer les molécules du gaz, lié au fait
que ces molécules ne sont pas ponctuelles mais de taille finie. Autrement dit, 𝑏 représente le volume propre de
1mol de molécules.

2 L’équation d’état donnée est molaire, mais il faut l’écrire sous forme extensive pour tracer les isothermes
demandées. En multipliant par la quantité de matière,

𝑃 (𝑉 − 𝑛𝑏) = 𝑛𝑅𝑇 .
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En développant,
𝑃𝑉 = 𝑛𝑃𝑏 + 𝑛𝑅𝑇 .

Les isothermes sont donc des droites croissantes parallèles, de pente𝑛𝑏 et d’ordonnée à l’origine𝑛𝑅𝑇 . Le volume
exclu 𝑏 s’obtient en linéarisant les isothermes et en estimant leur pente.

3 Dans la limite des faibles pressions, 𝑛𝑃𝑏 ≪ 𝑛𝑅𝑇 : le gaz de Clausius a donc un comportement de gaz parfait,
ce qui n’est pas surprenant.

Équilibre thermodynamique

Exercice 5 : Gonflage d’un ballon de basket 2 | 2 |

⊲ Équation d’état des gaz parfaits.

1 À chaque aller-retour du piston, la quantité d’air contenue dans le ballon augmente. Le volume et la température
restant constants, la pression augmente nécessairement. La quantité dematière initiale contenue dans le ballon vaut

𝑛0 =
𝑃0𝑉0
𝑅𝑇0

.

À chaque aller-retour, on y ajoute la quantité d’air passée par le piston, soit

𝑛1 =
𝑃0𝑉1
𝑅𝑇0

.

Ainsi, après 𝑘 allers-retours,

𝑛𝑘 = 𝑛0 + 𝑘𝑛1 =
𝑃0(𝑉0 + 𝑘𝑉1)

𝑅𝑇0
.

On en déduit la pression,

𝑃𝑘 =
𝑛𝑘𝑅𝑇0
𝑉0

soit 𝑃𝑘 =
𝑉0 + 𝑘𝑉1

𝑉0
𝑃0 .

2 Le résultat précédent se réécrit
𝑃𝑘

𝑃0
= 1 + 𝑘

𝑉1
𝑉0

d’où on déduit que la pression cible 𝑃★ est atteinte au bout 𝑘★ allers-retours avec

𝑘★ =
𝑉0
𝑉1

(
𝑃★

𝑃0
− 1

)
.

Numériquement,

𝑉0 =
4
3𝜋

(
𝑑0
2

)3
= 7,2 · 10−3m3 et 𝑉1 =

𝜋𝑑 2
1
4 ℓ1 = 7,9 · 10−6m3

d’où on trouve
𝑘★ = 55,3 .

Il faut donc faire 56 allers-retours pour atteindre la pression préconisée dans le ballon.
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Exercice 6 : Échanges entre deux réservoirs 2 | 1 |

⊲ Équation d’état des gaz parfaits ;
⊲ Équilibre thermodynamique.

1 Le réservoir ➊ est chauffé alors que le réservoir ➋ est refroidi, il y a donc un transfert d’énergie entre les deux.
Le système est dans un état stationnaire, mais pas dans un état d’équilibre thermodynamique.

2 Les deux réservoirs communiquent, et l’équilibre mécanique est atteint (pas de flux de gaz au travers du tube
reliant les deux réservoirs). La pression est donc la même dans les deux réservoirs, d’où{

𝑃𝑉 = 𝑛1𝑅𝑇1

𝑃𝑉 = 𝑛2𝑅𝑇2
soit 𝑛1𝑇1 = 𝑛2𝑇2 .

La quantité totale de gaz se conservant,

𝑛1 + 𝑛2 = 𝑛 soit
(
1 + 𝑇1

𝑇2

)
𝑛1 = 𝑛 d’où 𝑛1 =

𝑇2
𝑇1 +𝑇2

𝑛 ,

et de même

𝑛2 =
𝑇1

𝑇1 +𝑇2
𝑛 .

Le résultat s’obtient de manière naturelle en échangeant les 1 et les 2 ... et il est toujours utile de vérifier
que l’on retrouve bien 𝑛1 + 𝑛2 = 𝑛 !

3 D’après l’équation d’état appliquée à l’un ou l’autre des réservoirs,

𝑃 =
𝑇1𝑇2

𝑇1 +𝑇2

𝑛𝑅

𝑉
.

Exercice 7 : Tube circulaire à deux compartiments oral banque PT | 3 | 3

⊲ Force de pression ;
⊲ Équilibre mécanique ;
⊲ Oscillateur harmonique.

Dans tout l’exercice, on raisonne sur le piston, qui est soumis à quatre forces :
⊲ son poids #”

𝑃 =𝑚 #”𝑔 = −𝑚𝑔 cos𝜃 #”𝑒 𝑟 +𝑚𝑔 sin𝜃 #”𝑒 𝜃 ;
⊲ la force pressante exercée par le compartiment de gauche : #”

𝐹 g = 𝑃g𝑆
#”𝑒 𝜃 ;

⊲ la force pressante exercée par le compartiment de droite : #”
𝐹 d = −𝑃d𝑆 #”𝑒 𝜃 ;

⊲ la force de réaction du tube, dont la composante orthoradiale est forcément nulle car le piston se déplace
sans frottement : #”

𝑁 = 𝑁 #”𝑒 𝑟 .

1 Appliquons le théorème de la résultante cinétique au piston, supposé en équilibre. En projection sur #”𝑒 𝜃 , on
obtient

𝑚𝑔 sin𝜃 + 𝑃g𝑆 − 𝑃d𝑆 = 0

Pour relier les pressions à l’angle 𝜃 , exprimons le volume des deux compartiments :

𝑉g =
(𝜋
2 + 𝜃

)
𝑎𝑆 et 𝑉d =

(𝜋
2 − 𝜃

)
𝑎𝑆

Rappelons l’interprétation géométrique d’un angle en radian : un arc de cercle de rayon 𝑅 compris entre
les angles 𝜃1 et 𝜃2 > 𝜃1 a une longueur ℓ = 𝑅(𝜃2−𝜃1). Sachant qu’un quart de cercle a pour longueur an-
gulaire 𝜋/2 (donc longueur 𝑅𝜋/2 = 2𝜋𝑅/4), on en déduit que les deux compartiments ont pour longueur
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angulaire respective 𝜋/2 + 𝜃 et 𝜋/2 − 𝜃 .

Avec l’équation d’état, la condition d’équilibre s’écrit donc

𝑚𝑔 sin𝜃 + 𝑛𝑅𝑇(
𝜋
2 + 𝜃

)
𝑎𝑆

𝑆 − 𝑛𝑅𝑇(
𝜋
2 − 𝜃

)
𝑎𝑆

𝑆 = 0

ce que l’on peut réécrire

sin𝜃 =
𝑛𝑅𝑇

𝑚𝑔𝑎

©­­«
1

𝜋

2 − 𝜃
− 1

𝜋

2 + 𝜃

ª®®¬
=
𝑛𝑅𝑇

𝑚𝑔𝑎

𝜋

2 + 𝜃 − 𝜋

2 + 𝜃

𝜋2

4 − 𝜃 2

=
8𝑛𝑅𝑇
𝜋2𝑚𝑔𝑎

𝜃

1 − 4𝜃 2
𝜋2

ce qui permet bien d’identifier

sin𝜃 =
𝑇

𝑇c

𝜃

1 − 4𝜃 2/𝜋2 avec 𝑇c =
𝜋2𝑚𝑔𝑎

8𝑛𝑅 .

2 On constate que 𝜃 = 0 est toujours position d’équilibre, indépendamment de la température. Cherchons s’il
en existe d’autres, en se limitant aux valeurs 𝜃 > 0 : par symétrie, si 𝜃 est position d’équilibre, alors −𝜃 l’est aussi.
D’après l’inégalité de convexité du sinus, sin𝜃 ≤ 𝜃 : s’il existe des positions d’équilibre 𝜃 ≠ 0, cela impose d’avoir

𝑇 /𝑇c
1 − 4𝜃 2/𝜋2 < 1 .

Comme 1 − 4𝜃 2/𝜋2 < 1, cette condition ne peut être vérifiée que si 𝑇 < 𝑇c. Ainsi,
⊲ si 𝑇 < 𝑇c, il existe trois positions d’équilibre : 𝜃 = 0 (qualitativement instable) et 𝜃 = ±𝜃★ (qualitativement
stable) ;

⊲ si 𝑇 > 𝑇c, seule la position d’équilibre 𝜃 = 0 demeure, et elle est stable.

Pour aller plus loin : On peut représenter la situation sur le diagramme ci-dessous, appelé diagramme
de bifurcation. Dans le cas présent, on parle de bifurcation fourche supercritique.

𝑇

𝜃éq

𝜋/2

−𝜋/2

𝑇c

La limite basse température peut être étudiée par un développement limité : comme𝑇 ≪ 𝑇c, alors sin𝜃 ≪
1, ce qui autorise un développement limité. L’équation auto-cohérente devient(

1 − 4𝜃 2
𝜋2

)
sin𝜃 =

𝑇

𝑇c
𝜃 soit

(
1 − 4𝜃 2

𝜋2

)
�𝜃 =

𝑇

𝑇c
�𝜃 −→ 0

ce qui impose (
1 − 4𝜃 2

𝜋2

)
= 0 d’où 𝜃 = ±𝜋2 .
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3 Le piston se trouve initialement sur sa position d’équilibre stable𝜃 = 0, jusqu’à ce que la température atteigne𝑇c.
À ce moment là, la position d’équilibre 𝜃 = 0 devient instable. Sous l’effet d’une fluctuation interne au système,
le piston finit par être déséquilibré et se retrouve sur l’une des deux positions d’équilibre ±𝜃 , sur laquelle il reste
jusqu’à ce que 𝑇 atteigne 𝑇2 ... mais attention, comme cette position dépend de la température, le piston continue
à se déplacer en la suivant.

4 Le mouvement du piston étant circulaire, on a
#             ”
𝑂𝑀 = 𝑎 #”𝑒 𝑟 { #”𝑣 = 𝑎 ¤𝜃 #”𝑒 𝜃 { #”𝑎 = −𝑎 ¤𝜃 2 #”𝑒 𝑟 + 𝑎 ¥𝜃 #”𝑒 𝜃 .

Comme il n’y a pas de frottement, les forces ont la même expression qu’à la question 1. Le théorème de la résultante
cinétique projeté sur #”𝑒 𝜃 donne alors

𝑚𝑎 ¥𝜃 =𝑚𝑔 sin𝜃 + 𝑛𝑅𝑇(
𝜋
2 + 𝜃

)
𝑎𝑆

𝑆 − 𝑛𝑅𝑇(
𝜋
2 − 𝜃

)
𝑎𝑆

𝑆

Les mêmes calculs qu’à la question 1 donnent alors

𝑚𝑎 ¥𝜃 =𝑚𝑔 sin𝜃 + 2𝑛𝑅𝑇
𝜋𝑎

(
1

1 + 2𝜃/𝜋 − 1
1 − 2𝜃/𝜋

)
.

On se place au voisinage immédiat de la position d’équilibre 𝜃éq = 0, ce qui permet de supposer 𝜃 ≪ 1 et de faire
des développements limités. On a alors

𝑚𝑎 ¥𝜃 =𝑚𝑔𝜃 − 8𝑛𝑅𝑇
𝜋2𝑎

𝜃

qui se réécrit aussi
¥𝜃 +

(
8𝑛𝑅𝑇
𝜋2𝑎2𝑚

− 𝑔

𝑎

)
𝜃 = 0 .

On reconnaît alors l’équation différentielle d’un oscillateur harmonique de pulsation propre

𝜔 2
0 =

8𝑛𝑅𝑇
𝜋2𝑎2𝑚

− 𝑔

𝑎
=
𝑇

𝑇c

𝑔

𝑎
− 𝑔

𝑎
d’où 𝜔0 =

√︄(
𝑇

𝑇c
− 1

)
𝑔

𝑎
.
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