Thermodynamique — TD 1 Lycée Corneille, MPSI 2

Introduction a la thermodynamique

Modele du gaz parfait

Exercice 1 : Pression des pneus 1181
P
uuﬂ > Equation d'état des gaz parfaits.

Comme la quantité de matiere n d’air contenu dans le pneu et son volume V sont des constantes, alors d’apres

I’équation d’état des gaz parfaits,
P1 _ P2 nR

n L V
d’ou on déduit

T
Pz = —2P1 = 2,5bar.
T

La variation relative de pression est supérieure a 10 %, ce qui est loin d’étre négligeable. Le meilleur conseil a
donner est de refaire la pression des pneus de la voiture. Notez d’ailleurs qu’il est préconisé de la vérifier chaque
mois ... et indispensable de le faire au moins deux fois par an, avant les grands trajets!

[Exercice 2 : Fuite d’hélium 2| X 1]

> Equation d'état des gaz parfaits;
ﬂl]l]l] > Vitesse quadratique moyenne.

D’apreés la loi des gaz parfaits,

MpV
ow="Rr  doun |m=2PC

- —34¢.
M RT _ °8

La densité particulaire est reliée au nombre total d’atomes N contenus dans la bouteille et a son volume par n* =
N/V. Ainsi, ’équation d’état donne

N N,
PV = A RT  dou n* = % =5,1-10% atomes/m° .
A

Par définition de la température cinétique,
1 3
—mu® = ZkgT
2 2

ou m = M/Nj est la masse d’'un atome. Comme R = Njkg,

/3RT 3 1
U=4/—=14-100m-s .
M
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La masse restante m’ vaut

, Mp'V
m = =20g
RT’

si bien que

Am=m-m'=10g.

Toujours d’apres I’équation d’état, on a dans ce nouvel état

’ MpV
pV = " Rr” donc 7 = 1P soit 77 = P17 _ 435K
M m’R p’
[Exercice 3 : Existence d’une atmosphére &2 % 1]
uuﬂ > Vitesse quadratique moyenne.

On trouve o = 1,1-10*m - s~ et oppr =2,4-10°m - 571,
A la surface de la Terre (T = 20°C), la vitesse quadratique moyenne vaut (cf. cours)

3RT 2 _1
ur=,/—=51-10"m-s .

N,

Ainsi, elle est trés inférieure a la vitesse de libération, ce qui permet de comprendre I’existence d’'une atmosphere
stable.

Attention, la vitesse quadratique moyenne n’est ... qu’une moyenne! Un certain nombre de molécules du
gaz, de ordre de la moitié, ont une vitesse supérieure d u. La condition de non-dispersion de ’atmosphére
par agitation thermique doit donc s’écrire u << vyp, mais pas u < vjp.

Pour qu’une atmosphére composée de diazote puisse exister a la surface de la Lune, il faudrait avoir

2
M, o1

=64-10°K.
3R

ur, < UlibL soit T <«
On peut penser que cette condition est globalement remplie, et donc que notre explication n’est donc pas sufhi-
sante, puisque la température de la Lune devrait permettre 'existence d’une atmosphére stable. En pratique, le
champ magnétique joue aussi un role essentiel en formant un bouclier qui dévie les vents solaires (flux de parti-
cules chargées, principalement des protons et des électrons, éjecté en continu du Soleil dans toutes les directions),
et protége I'atmosphere. La Lune ne produisant pas de champ magnétique, son hypothétique atmosphere serait
arrachée par le vent solaire.

[Exercice 4 : Gaz de Clausius 2| K 1]
l'luﬂ > Equation d’état.

Le volume exclu représente un volume dans lequel ne peuvent pas pénétrer les molécules du gaz, lié au fait
que ces molécules ne sont pas ponctuelles mais de taille finie. Autrement dit, b représente le volume propre de
1mol de molécules.

L’équation d’état donnée est molaire, mais il faut ’écrire sous forme extensive pour tracer les isothermes
demandées. En multipliant par la quantité de matieére,

P(V —nb) =nRT.
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En développant,
PV =nPb +nRT .

Les isothermes sont donc des droites croissantes paralleles, de pente nb et d’ordonnée al’origine nRT. Le volume
exclu b s’obtient en linéarisant les isothermes et en estimant leur pente.

Dans la limite des faibles pressions, nPb < nRT : le gaz de Clausius a donc un comportement de gaz parfait,
ce qui n’est pas surprenant.

Equilibre thermodynamique

[Exercice 5 : Gonflage d’un ballon de basket 2| K2 | J
I]ﬂﬂ > Equation d'état des gaz parfaits.

A chaque aller-retour du piston, la quantité d’air contenue dans le ballon augmente. Le volume et la température
restant constants, la pression augmente nécessairement. La quantité de matiére initiale contenue dans le ballon vaut

PV
ny=—.
RT,

A chaque aller-retour, on y ajoute la quantité d’air passée par le piston, soit

Py
ng=—-.
'R

Ainsi, apres k allers-retours,

Py(Vo + kV;

RTy
On en déduit la pression,
RT; Vo + kV;
Pe=E00 it |p =T p
Vo Vo
Le résultat précédent se réécrit
P, V;
LGy
Py Vo

d’ou on déduit que la pression cible P* est atteinte au bout k* allers-retours avec

k* = Yo (P* 1)
V1 P() '

Numériquement,
3 2
nd
?) =72-107%m® et V= Tlt’l =79-10"°m’

d’ou on trouve
k* =553.

Il faut donc faire 56 allers-retours pour atteindre la pression préconisée dans le ballon.
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[Exercice 6 : Echanges entre deux réservoirs @21%1] ]

IS Equation d'état des gaz parfaits;
|]|]|]|] > Equilibre thermodynamique.

Le réservoir @ est chauffé alors que le réservoir @ est refroidi, il y a donc un transfert d’énergie entre les deux.
Le systeme est dans un état stationnaire, mais pas dans un état d’équilibre thermodynamique.

Les deux réservoirs communiquent, et I’équilibre mécanique est atteint (pas de flux de gaz au travers du tube
reliant les deux réservoirs). La pression est donc la méme dans les deux réservoirs, d’ou

PV = anTl .
soit mT =nT;.

PV = leRTz

La quantité totale de gaz se conservant,
. T . T;
ni+n;=n soit 1+ —|n;=n d’ou ny = n,
Tz T1 + Tz
et de méme
T
ny = n.
i +T

Le résultat s’obtient de manieére naturelle en échangeant les 1 et les 2 ... et il est toujours utile de vérifier
que l’on retrouve bienny + n; = n!

D’aprés I’équation d’état appliquée a I'un ou l'autre des réservoirs,

_ TT, nR
T Th+L VS

[Exercice 7 : Tube circulaire a deux compartiments oral banque PT | (& 3| 3% 3]

/ > Force de pression;
ol I] |] > Equilibre mécanique;
> Oscillateur harmonique.

Dans tout I’exercice, on raisonne sur le piston, qui est soumis a quatre forces :
. - — — . —
> son poids P =m¢g = -mgcosfe, + mgsinfey;
. . = N
> la force pressante exercée par le compartiment de gauche : Fy = P,S€p;
—
> la force pressante exercée par le compartiment de droite : Fq = —P3Sey;
> la force de réaction du tube, dont la composante orthoradiale est forcément nulle car le piston se déplace
= —
sans frottement : N = N¢,.

Appliquons le théoréme de la résultante cinétique au piston, supposé en équilibre. En projection sur €, on
obtient
mgsin 0 + PgS — PgS = 0

Pour relier les pressions a ’angle 8, exprimons le volume des deux compartiments :
T T
Ve=(5+6)as et Va=(Z-0)as
2 2
Rappelons Uinterprétation géométrique d’un angle en radian : un arc de cercle de rayon R compris entre

les angles 0y et 0, > 61 a une longueur £ = R(0, — 61). Sachant qu’un quart de cercle a pour longueur an-
gulaire /2 (donc longueur R /2 = 2R /4), on en déduit que les deux compartiments ont pour longueur
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angulaire respective /2 + 0 et w[2 — 0.

Avec I’équation d’état, la condition d’équilibre s’écrit donc

ce que 'on peut réécrire

ce qui permet bien d’identifier

) nRT nRT
mgsin6 + — S—— S=0
(5+9)(15 (E—Q)QS
. nRT 1 1
sinf = = -
mgay—__—9 =440
2
T T
~ nRT E +6 - 5 +0
 mga 71_2 g
4
_ 8nRT 0
~ n’mga 46?
o
) T 0 r°mga
sinf = i ng/ﬂ'z avec Tc = SnR

Lycée Corneille, MPSI 2

On constate que 8 = 0 est toujours position d’équilibre, indépendamment de la température. Cherchons s’il
en existe d’autres, en se limitant aux valeurs § > 0 : par symétrie, si 0 est position d’équilibre, alors —0 l’est aussi.
D’apres I'inégalité de convexité du sinus, sin 8 < 0 : s’il existe des positions d’équilibre 6 # 0, cela impose d’avoir

Comme 1 — 46%/7% < 1, cette condition ne peut étre vérifiée que si T < T.. Ainsi,

T/T,
1—46% /72

> si T < T, il existe trois positions d’équilibre : = 0 (qualitativement instable) et 6 = +6* (qualitativement

stable);

> siT > T, seule la position d’équilibre § = 0 demeure, et elle est stable.

Pour aller plus loin : On peut représenter la situation sur le diagramme ci-dessous, appelé diagramme
de bifurcation. Dans le cas présent, on parle de bifurcation fourche supercritique.

Osq

/2

—1/2

La limite basse température peut étre étudiée par un développement limité : commeT < T, alorssin 0 <
1, ce qui autorise un développement limité. L’équation auto-cohérente devient

2
(1—ﬂ) sinf = Z9
T,

, 462 T
p C soit (1—F)ﬂ=iﬁ—>0

ce qui impose

(@) ev-nc-sa |

462
(1——):0 doi 0=+

2
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Le piston se trouve initialement sur sa position d’équilibre stable 6 = 0, jusqu’a ce que la température atteigne T..
A ce moment 13, la position d’équilibre & = 0 devient instable. Sous I’effet d’une fluctuation interne au systéme,
le piston finit par étre déséquilibré et se retrouve sur I'une des deux positions d’équilibre +0, sur laquelle il reste
jusqu’a ce que T atteigne T, ... mais attention, comme cette position dépend de la température, le piston continue
a se déplacer en la suivant.

Le mouvement du piston étant circulaire, on a
OM =ua¥e, ~ U =abey ~ d =-ab’e, +abey.

Comme il n’y a pas de frottement, les forces ont la méme expression qu’a la question 1. Le théoréme de la résultante
cinétique projeté sur €y donne alors

.. RT RT
maf = mgsin 0 + k [— S
(%+9)a5 (%—Q)aS
Les mémes calculs qu’a la question 1 donnent alors
i 10+ 2nRT 1 1
mab = mg sin - .
9 7a \1+20/7 1-20/x

On se place au voisinage immédiat de la position d’équilibre 0sq = 0, ce qui permet de supposer 6 < 1 et de faire
des développements limités. On a alors

8nRT
mta

0

mab = mg6 —

qui se réécrit aussi

§+(8nRT —Q)G:O.

m2a’m a

On reconnait alors ’équation différentielle d’un oscillateur harmonique de pulsation propre

8nRT T T
oi=Smm-t=gi-2 a1 -1)%
marm a T.a a a
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